

Strategies for health interpretation: development of HBM healthbased guidance values for individual phthalates and BPA

science and policy for a healthy future

Workshop on policy uptake of HBM-results

Brussels - Nov 2018

**Eva Ougier (ANSES)** 

& Petra Apel/Rosa Lange (UBA)



# WP 5 – Translation of Results into Policy



# Task 5.2 – Overall objectives



### A) <u>Establishment of a methodology to derive HBM-</u> <u>HBGVs</u>

- ➢ for the general population (HBM-HBGV<sub>GenPop</sub>)
- ➢ for workers (HBM-HBGV<sub>Workers</sub>)
- based on existing derivation schemes of UBA and ANSES
- taking into account comments of National Hub experts
- Publication in peer-reviewed journal

### B) Derivation of HBM-HBGVs for substances prioritized under HBM4EU

- Documentation as reports (deliverables) including fact sheets summarizing the relevant information used for the derivation of the values
- Taking into account comments of National Hub experts
- Publication in peer-reviewed journal

# Task 5.2 – Overall working process

Strategy to derive HBM-HBGVs for the general population & for occupationaly exposed adults Proposal for derivation and calculation of values (UBA / ANSES)

NHC contacts NHCPs for NH expert consultation

Integration of comments / remarks from NH experts Finalisation of the HBM-HBGVs (UBA / ANSES) Deliverable: HBM-HBGVs for prioritised substances

# **Definition of derived HBM-HBGVs**

Values derived according to current knowledge

### HBM-HBGV<sub>GenPop</sub>

Similar to the HBM-I value from the German Biomonitoring Commission

- Concentration of a substance or its metabolites in human biological material ≤ which there <u>is no risk of</u> <u>health impairment anticipated</u>
- verification or <u>control value</u>
- rather a screening tool for health risk assessment on population level, should be used with reasonable care at the individual level
- not for non-threshold carcinogens

### HBM-HBGV<sub>Workers</sub>

# Similar to the Biological Limit Value (BLV) from ANSES

- concentration of a substance or its metabolites in human biological material aiming to protect workers exposed regularly and over the course of a working life from the adverse effects related to medium- and long-term exposure
- screening tool for occupationally exposed adults health risk assessment
- also possible to derive for non-threshold carcinogens, as additional life time risks (10<sup>-4</sup>, 10<sup>-5</sup>, 10<sup>-6</sup>)



## **Derivation strategy – Prerequisites**



# **Derivation strategy – Methodology**





### Scheme of derivation option n°2 <u>based on a defined tolerable</u> intake/external exposure value (for urinary biomarkers)



### Scheme of derivation option n°3 <u>based on a animal POD</u> (for urinary biomarkers)



# **Limitations and Uncertainties**

- > Data from epidemiological and animal studies vary in quality and focus
- Data on metabolite excretion/TK data often coming from studies with few volunteers, sex or age-specific differences or potential dependency on exposure level often not considered
- Intra- and inter-individually variability of urinary daily volume or creatinine excretion rates

# Level of confidence is attributed to each derived HBM-HBGV: <u>low</u> or <u>medium</u> or <u>high</u>



8 Nov 2018 – Workshop on policy uptake of HBM-results

# Why do we need HBM-HBGVs?

- Improve risk assessment of chemicals by using HBM data
- Perform this HBM-based risk assessment <u>consistently</u> within the EU
- Helping policy makers to prioritise action



Support for policy action and risk management measures

- Easy-to-use screening tools for health risk assessment (should be used with reasonable care at the individual level)

- <u>Not</u> to be considered as a stand-alone diagnostic criteria



11

8 Nov 2018 – Workshop on policy uptake of HBM-results

# **Relation to other existing internal limit values**

**Biomonitoring Equivalent (BE)** (developed as part of a collaboration between Summit Toxicology, US EPA, Health Canada & multiple industry trade groups):

⇒ concentration of a chemical in blood or urine that corresponds to an allowable exposure guidance value (such as a USEPA Reference Dose or ATSDR Minimal Risk Level or Acceptable Daily Intake) considered safe by regulatory agencies

#### The BE derivation process includes:

- Compiling existing tolerable exposure reference values;
- Compiling and reviewing existing pharmacokinetic information;
- Reviewing information on the MOA;
- Assessing available biomarkers for specificity and relevance;
- Deriving BE values for the POD and the exposure reference value (BE<sub>POD</sub>, BE);
- Independent peer-review of the BE;
- Publishing the BE dossier in the peer-reviewed literature;
- Development of chemical-specific communications materials

# **Relation to other existing internal limit values**

- ⇒ If derived from a defined tolerable intake value, then HBM-HBGVs derived within HBM4EU are functionally identical to Biomonitoring Equivalents, however:
- the corresponding allowable exposure guidance values selected are values considered safe by an European (regulatory) agency (e.g. EFSA, ECHA, SCOEL...) as a priority
- ⇒ If HBM-HBGVs are derived from an animal POD (and then converted to a 'TDI-like' value or converted to a Human Equivalent POD and then to a Human Equivalent concentration):
- assessment factors (AFs) applied are preferably the ones recommanded by ECHA<sup>1</sup> (if not, choice and magnitude of the AFs will be explained)

<sup>1</sup> (ECHA (2012). Guidance on information requirements and chemical safety assessment. Chapter R.8: Characterisation of dose [concentration]-response for human health. Version: 2.1. <u>https://echa.europa.eu/documents/10162/13632/information\_requirements\_r8\_en.pdf/e153243a-03f0-44c5-8808-88af66223258</u>

## Task 5.2 – Output so far



# Task 5.2 – Outlook



### **Approaches for deriving HBM-HBGVs for phthalates mixtures ?**

#### **Phthalates**

- ⇒ shown to result in disturbances in androgen-mediated development of the reproductive system in males (*in utero*) with biological pathways leading to common effects characterized by the spectrum of effects of the rat phthalate syndrome (ECHA 2017, Danish EPA 2016):
  - inhibition of foetal testosterone production
  - reduction of male anogenital distance
  - decrease of gene expression related to steroid biosynthesis
  - increase permanent nipple retention in male offspring
  - increase incidence of genital malformations (hypospadias and cryptorchidism)
  - delay puberty onset
    - reduction of semen quality
    - cause testicular changes (decreased testes and epididymides weight, tubular atrophy and Leydig cell hyperplasia)

#### ⇒ Relevant for male humans

Suppression of fœtal androgen action

### **Approaches for deriving HBM-HBGVs for phthalates mixtures ?**

Work to perform

#### **Evidence from the recent peer-reviewed scientific literature shows that:**

- phthalates produce mixture effects;
- the effects are often predicted well by using the **dose-addition concept**

**Existing methods for cumulative risk assessment** 

- Toxic Unit Summation (TUS)
- Hazard index (HI)
- Point of departure index (PODI)
- Toxic equivalent factors (TEF)/ Relative potency factor (RPF)
- Similar mixtures risk indicator (SMRI)



Methods to be assessed next for phthalate mixtures (linked to WP15)



# Thanks for your attention

Umwelt 🎲 Bundesamt The UBA T5.2 team

**Petra Apel** 

**Rosa Lange** 



### The ANSES T5.2 team

**Christophe Rousselle** 

Fatoumata Sissoko

Farida Lamkarkach

**Eva Ougier** 



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 733032.



# **Back Up slides**



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 733032.

### HBM-HBGVs for DEHP (Bis(2-ethylhexyl)phthalate)

Published

|                                                            | For the general population                                                                                                                                                                                              | n For occupationaly exposed adults                                                                                                                                                                                                                              |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Selected<br>TK data                                        | <ol> <li>Anderson et al. (202<br/>20-volunteers of<br/>2) Koch et al. (2005) f<br/>1-volunteer hi</li> </ol>                                                                                                            | <ol> <li>for urinary excretion fractions of metabolites<br/>ral single-dose study using labelled-DEHP<br/>or the excretion half-lives (DEHP + metabolites)<br/>gh single-doses labelled-DEHP oral study</li> </ol>                                              |
| Selected<br>BM(s)                                          | Σ [urinary 5-oxo-MEHP + 5-OH-MEHP<br>or<br>Σ [urinary 5cx-MEPP + 5-OH-MEHP]                                                                                                                                             | Urinary 5cx-MEPP                                                                                                                                                                                                                                                |
| Derivation<br>method                                       | From an external toxicological guid<br>value + TK extrapolation (based or<br>urinary mass balance)                                                                                                                      | lance From a Point of Departure (POD) + TD and TK<br>extrapolation (based on urinary mass balance)                                                                                                                                                              |
| Selected<br>external<br>tox<br>guidance<br>value or<br>POD | TDI from EFSA (2005): 0,05 mg/kg<br>Based on multigenerational reprotox<br>study by Wolfe and Layton (2003):<br>NOAEL of 4,8 mg/kg bw/d for develop<br>impairement; AFs = $[10 \cdot 10] = 100$                         | bw/dPOD: NOAEL of 5,8 mg/kg bw/d for bilateral<br>aspermatogenesisoral rataspermatogenesisobserved in the 2-y reproductive rat study of David<br>et al. (2000)Allometric adjustement + TK extrapolation based on<br>urinary mass balance + AFs = [2,5 · 5] = 10 |
| HBM-<br>HBGV                                               | Σ urinary [5-oxo-MEHP + 5-OH-ME         Children (6-13y):       340 µg/L         Adults:       500 µg/L         Σ urinary [5cx-MEPP + 5-OH-MEHF         Children (6-13y):       380 µg/L         Adults:       570 µg/L | <ul> <li>HP] Urinary [5cx-MEPP] at the end of the workshift</li> <li>Workers : 620 μg/L</li> <li>]</li> </ul>                                                                                                                                                   |

### HBM-HBGVs for DEHP (Bis(2-ethylhexyl)phthalate)

|              | For the general population                                                                 | For occupationaly exposed adults                                                         |
|--------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|              | Level of confidence attributed to the<br>derived DEHP HBM-HBGV <sub>GenPop</sub><br>MEDIUM | Level of confidence attributed to the<br>derived DEHP HBM-HBGV <sub>Workers</sub><br>LOW |
| HBM-<br>HBGV | Σ urinary [5-oxo-MEHP + 5-OH-MEHP]Children (6-13y):340 µg/LBM-Adults:500 µg/L              | Urinary [5cx-MEPP] at the end of the workshift<br>Workers : 620 μg/L                     |
|              | Σ urinary [5cx-MEPP + 5-OH-MEHP]<br>Children (6-13y): 380 μg/L<br>Adults: 570 μg/L         |                                                                                          |

Published

### HBM-HBGVs for DINCH (Diisononylcyclohexane-1,2-dicarboxylate) Published

|                                                         | For the gen                                                                                                                                         | eral population                                                                          |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| Selected TK data                                        | Koch et al. (2013) for metabolites fractional urinary excretion ratios + excretion half-<br>lives<br>3-volunteers high single-dose DINCH oral study |                                                                                          |  |
| Selected BM(s)                                          | Σ [urinary OH-MINCH + cx-MINCH]                                                                                                                     |                                                                                          |  |
| Derivation<br>method                                    | From an external tox guidance value + TK extrapolation (based on urinary mass balance)                                                              |                                                                                          |  |
| Selected<br>external<br>toxicological<br>guidance value | <b>TDI from EFSA (2006): 1,0 mg/kg bw/d</b><br>Based on 2-generation reprotox oral rat st<br>NOAEL of 100 mg/kg bw/d for nephrotoxic                | udy by BASF (2003)<br>city; AFs = [10 · 10] = 100                                        |  |
| HBM-HBGV                                                | Σ urinary [OH-MINCH + cx-MINCH]<br>Children (6-13y): 3 mg/L<br>Adults: 4,5 mg/L                                                                     | Level of confidence attributed to the<br>derived DINCH HBM-HBGV <sub>GenPop</sub><br>LOW |  |