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1. Introduction 
 

HBM4EU has established Chemical Working Groups during the proposal phase for the nine 
prioritized substance groups that HBM4EU will work on in 2017 and 2018. Additional substance 
groups will be identified by late 2018 through the implementation of a refined prioritization strategy.  

For each substance group, scoping documents are produced under Workpackage 4.4 of HBM4EU. 
The scoping document will contain a review of the available evidence, will list policy-related 
questions, identify knowledge gaps and propose research activities. Proposed activities will be fed 
into the framework of work packages and tasks of HBM4EU in a coordinated and harmonized 
manner, and will constitute the basis for the annual work plans. The scoping documents are the 
linkage between policy questions and the research to be undertaken (broken down for single 
substances) in order to answer those questions. This methodology will optimize work on the different 
substances, avoid redundancies, ensure coordination and facilitate the calculation of budgets for 
each WP. The scoping documents do not contain a comprehensive literature review per substance 
group but are intended to provide information for the WP leaders who will draft the Annual Work 
Plans.  

 

For the selected substance groups the availability of (toxicology or human biomarker) data is 
variable. A scheme was therefore developed to classify the compounds within each substance group 
into categories A, B, C, D and E based on the availability of data to answer research questions (see 
further). In direct response to the key project goal of exploiting HBM data in policy making to 
positively impact on human health, the research activities for each substance group will generate 
knowledge on exposure trends and associated health effects. Throughout the course of the project, 
we will generate knowledge that will shift substances towards to a higher level of knowledge 
category.  

 

For further information see www.hbm4eu.eu 

 

 

 

 

 

 

 

  

http://www.hbm4eu.eu/
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2. Background Information 
 
Flame retardant (FR) is the term given to any compound or mixture added to a consumer product 
or building material to reduce the flammability and thus improve product safety. Flame retardants 
can be either chemically-bound to the material of the consumer product, or chemical additives (not 
bound to the product material). A range of both inorganic and organic FRs are in use; however of 
concern with respect to HBM4EU are in particular the synthetic organic flame retardants. There 
are three primary types of synthetic organic FRs categorized based on their elemental 
composition, these being bromine (Br), chlorine (Cl) and phosphate (P).  

Since the 1970s, the primary FR compounds used were the polybrominated diphenyl ethers 
(PBDEs) and hexabromocyclododecane1 (HBCDD). However, due to concerns regarding their 
persistence, toxicity and bioaccumulative potential, these compounds have been added to the 
Stockholm Convention on Persistent Organic Pollutants (www.pops.int), including the most recent 
addition of deca-BDE (also called BDE-209, referring to the PBDE with 10 bromines) in 2017. Yet, 
although these compounds are regulated under the Stockholm Convention and through other 
regulatory mechanisms, the need for FRs has not decreased and this has led to a broadening of 
the market for FR compounds, with a wide range of replacement compounds used globally. These 
replacement compounds are typically brominated, chlorinated and organophosphate compounds, 
some of which are mentioned below. In the following document, OPE (organophosphate esters), 
refers to the organophosphate-based FRs, while NBFR (novel brominated flame retardant) refers 
to the brominated replacements for PBDEs and HBCDD. 

1.1.1 Hazardous Properties 
PBDEs and HBCDDs have been identified to have a range of adverse health effects, including 
potential neurotoxic, endocrine, and carcinogenic effects.inter alia ,1–3 The toxicity of 
tetrabromobisphenol A (TBBPA) is also well-studied and it has been identified to have a range of 
potential hazardous properties.4–7 Early evidence suggests that a number of the replacement FRs 
may have similar health concerns,8–10 and moreover, insufficient evidence exists to evaluate 
toxicity for many of these new FRs. The toxicity and human exposure of selected FRs has been 
investigated in individual studies, and aquatic toxicity has received significant attention, but there 
remain large gaps in toxicity studies of directly applicability to human populations.  

Bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate 
(EH-TBB) have been identified as potentially bioaccumulative.11 Decabromodiphenyl ethane 
(DBDPE) is structurally similar to BDE-209 and hypothesized to have similar toxicity. Triphenyl 

                                                
1 Actually, six isomers of HBCDD exist. Therefore, sometimes the plural HBCDDs is used as synonymous for HBCDD. 

http://www.pops.int/


 

[4] 

phosphate (TPHP) is identified by ECHA as very toxic to aquatic life, has been found to affect 
oestrogen receptor binding activities in zebrafish,12 and may be associated with altered hormone 
levels and decreased semen quality in men.13 Tris-2-chloroethyl phosphate (TCEP) was also found 
to affect oestrogen receptor binding activities in zebrafish,12 may affect neurodevelopment, with 
multiple mechanisms of toxicity,8 and is a possible reproductive toxin.14 TCIPP may also affect 
neurodevelopment8 and is potentially carcinogenic.14 Tris(1,3-dichloropropyl)phosphate (TDCIPP) 
may be associated with altered hormone levels and decreased semen quality in men,13 may affect 
neurodevelopment, with multiple mechanisms of toxicity,8 and also may be carcinogenic.14 

The OPEs in particular are seeing significant recent use as FRs, and the levels in consumer 
products, and in the environment are typically orders of magnitude higher than the brominated and 
chlorinated FRs.15,16 A number of OPEs have evidence of toxic effects in mammals, but generally 
toxicity data is insufficient, and is a crucial knowledge gap considering the high environmental 
levels of these compounds. Short-term and long-term toxicological data are needed, including 
additive or synergistic effects of FR mixtures. Many flame retardants exist in mixtures, e.g., the 
technical mixtures of the PBDEs, and Firemaster 550, which contains triphenyl phosphate (TPHP), 
isopropylated triphenyl phosphate isomers (ip-TPP), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-
TBB) and bis(2-ethylhexyl)- 2,3,4,5-tetrabromophthalate (BEH-TEBP). In terms of toxicity, the 
PBDEs have received attention as mixtures and as individual compounds,17 and there is evidence 
of Firemaster 550 as an endocrine disrupting compound and obesogen.9 However, there is 
generally little attention given to the toxic effects of the typical mixtures of FRs occurring indoors 
and to which humans are exposed. Thus, the issue of mixture toxicity is highly relevant to FRs, and 
remains a large data gap within the toxicological knowledge on FRs. 

Further knowledge gaps exist in the area of carcinogenicity, especially for hormonal cancers; there 
is limited information on long-term and chronic health effects; reproductive health and endocrine 
disrupting effects also require further investigation. Finally, epidemiological studies that include 
mixtures of FRs are critical to assess links between exposure and health outcomes. 

1.1.2 Exposure Characteristics 
FRs are widely used in consumer products and building materials, in particular in electronics, 
textiles and furnishings, automobiles and other vehicles, building insulation, flooring, appliances 
and ducting, and studies have identified a range of FRs in all of these product groups.18–23 The 
amounts of and types of FRs vary widely even within product groupings, and can be found at up to 
percentage levels in consumer products, but typically are in the µg/g range.  

There is extremely limited information on EU and/or global production of FRs. The provision of this 
information is challenging for the following reasons: (1) FR producers maintain proprietary control 
of the chemical composition of some commercial FR mixtures, and information may not be publicly 
available; (2) regulations and/or information on commercial production of FRs provided for the EU 
region may not reflect the use in the EU or the potential for human exposure, since many FRs 
enter the EU already incorporated into consumer products manufactured in other regions, and 
chemicals already incorporated into consumer products may not be included in some chemical 
inventories; and (3) the FR market is rapidly changing in response to regulations and shifts in 
product requirements, and usage information becomes quickly out of date. Further complexity of 
information of FRs in consumer products arises from variability in FR mass in the same products 
due to manufacturing variability or use and complex products such as cars contain a range of FRs 
with components from global sources.  

Human exposure to FRs can occur through a variety exposure pathways, via inhalation, ingestion 
(either through food or ingestion of indoor dusts, as FRs migrate from products and materials into 
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the indoor and outdoor environment) and dermal exposure, including through direct contact with 
flame-retarded consumer products.24 In addition to use as FRs, a number of these compounds 
(particularly the phosphorus-based FRs) also act as plasticizers,14 and thus are also added to 
synthetic materials for this purpose. The exposure pathways differ based on the compound 
properties and FR use. For example, while adult exposure to some FRs is primarily through diet, 
for babies and toddlers, due to the hand-to-mouth behaviour and mouthing of toys, the primary 
exposure pathway is through ingestion of house dust.25 

In general, human exposure to PBDEs is lower in Europe than in North America,26 while evidence 
from indoor dust and chemical usage suggests higher human exposure to HBCDDs in Europe than 
in North America based on identified correlations between dust and serum concentrations.27,28 The 
strong interpretations of exposure trends from PBDEs suggest that sufficient biomarker data for 
other FRs, once obtained, will enable similar improvements in understanding of FR exposure and 
effects in the European population. Some evidence of regional differences in exposure pathways 
within Europe for the NBFRs and OPEs,29 however there is no systematic overview of regional 
differences. 

1.1.3 Policy Relevance 
A small number of FRs are restricted both within the EU as well as at the international level. 
PBDEs and HBCDD are restricted under the Stockholm Convention on Persistent Organic 
Pollutants, and now have limited use. Many replacement/alternative FRs are registered under 
REACH, however there are currently no regulations for a number of FR compounds. Given the 
existing regulations on flame retardants both at the international (e.g., Stockholm Convention) and 
European level (e.g., REACH), HBM4EU can contribute by providing information on the effect of 
legislative restrictions and bans on concentrations in the European human population, particularly 
with respect to establishing baseline exposure concentrations for current-use flame retardants. 
Evaluating and comparing temporal trends for banned/restricted vs. current-use FRs will also allow 
us to determine if current regulations are effective across the EU, and if the emerging FRs are 
showing signs of accumulation in the environment or within the European population. For the 
majority of FRs there are no established safety limits, health-based reference values or guidance 
values, and limited knowledge of usage volumes due to manufacturer confidentiality. Of the list of 
62 FRs in HBM4EU, 1 is registered under REACH under the 10000-100000 t/y tonnage band, 7 
FRs at 1000-10000 t/y and 9 at 100-1000 t/y; 3 FRs are not registered under REACH but listed 
under CoRAP based on (among others) high aggregated tonnage and wide dispersive use. 28 of 
the 62 FRs are not registered under REACH.  

Of concern is the relative lack of information regarding the use, exposure pathways and toxicity of 
many of these compounds. The European Food Safety Authority (EFSA) identified 17 brominated 
FRs which are currently in use and with detectable levels in environmental and/or human matrices, 
and a further ten brominated FRs that have concentrations >0.1% in consumer products and 
materials, but lack any information on human and environmental levels or even occurrence at all.30 
In conjunction with a lack of exposure data, there also is a lack of physicochemical and 
toxicological information for many of these compounds, and what information is available for some 
compounds is based on the chemical properties (e.g., quantitative structure–activity relationship 
models), and estimates rather than direct evidence. This makes it difficult for regulatory bodies and 
legislative agencies to make informed decisions. Furthermore, the broad suite of known FRs 
covers a wide range of structures and properties, meaning that in most cases each individual FR 
must be independently studied to understand emission, exposure and toxicity, Conclusively, it can 
be said that large data gaps exist for a wide number of FRs.  

HBM4EU provides a platform to identify geographic patterns and time trends of exposure from 
existing data sets and to identify and rectify where major gaps exist through additional targeted 
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investigation. This will allow regulatory agencies to identify any FRs that may be of concern and to 
make informed decisions. 

1.1.4 Technical Aspects 
Highly lipophilic FRs, particularly those with higher persistence, such as the PBDEs, can be 
detected in parent compound form in human matrices, most commonly in human serum31–33 and 
breast milk.34,35 In contrast, some NBFRs and many OPEs are metabolized in the body, and more 
commonly used biomarkers of exposure are metabolites detected in urine.36,37 However, many of 
the metabolites are uncertain, and metabolic pathways are only characterized for a limited number 
of FRs.38–43 Biomarkers for many FRs of emerging concern are unknown. Target matrices for 
biomonitoring for the emerging FRs can be inferred from physicochemical properties of the 
molecules, considering their structural similarity to better quantified compounds, and/or relying on 
chemical modelling techniques, but there is a lack of practical measurement data for many 
compounds. Many biomonitoring studies report high detection frequencies of FR biomarkers in 
human matrices, but there is little systematic assessment of temporal or spatial trends. PBDEs are 
one of the few compounds where generalization of trends and distributions has been made from 
biomarkers.33 Quantification of a rapidly increasing temporal trend of PBDEs in maternal milk in 
Sweden44,45 lead to initial concerns regarding human exposure to PBDEs and first regulatory 
actions.  

Analytical methods for PBDEs and HBCDD in serum and milk are relatively well-established, and 
have been applied around the world.33,46–52 Analysis for PBDEs is typically via GC-MS, and 
instrumental parameters vary in individual methods. Analysis of HBCDD can be via GC-MS or LC-
MS, however the GC-MS method has limited accuracy53 and does not allow quantification of 
individual isomers. LC-MS is strongly recommended for HBCDD. The widespread use of C13-
labelled internal standards for both PBDEs and HBCDD allows reliable quantification of these 
compounds.  

Within the replacement NBFRs and OPEs, analytical methods are less established, and recent 
interlaboratory comparisons have identified large inconsistencies in laboratory performance.53,54 As 
the group of flame retardants is defined by its use, not by its chemical identity, it includes many 
structurally different chemicals. Thus, analytical methods will differ for certain sub-groups of flame 
retardants. While the phosphorous flame retardants are a relatively homogenous group, the 
NBFRs vary greatly. Consequently, methods will have to be optimised for each individual 
compound. The availability of standards often limits method developments. However, new 
standards become available each year, and specific interests can be communicated to the 
producers of analytical standards. Certified reference materials are usually not available, or are not 
applicable. Older reference materials (e.g., <2000) are not often useful as they do not contain the 
current complex mixture of FRs that are the replacements for the PBDEs and HBCDD. 
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3. Categorization of Substances 
Category A are substances for which HBM data are sufficient to provide an overall picture of exposure levels across Europe, and interpretation of 
biomonitoring results in terms of health risks is possible. These substances have identified toxicity to humans and/or environmental systems, and 
have been regulated/restricted in view of this. Category B substances have some existing HBM data, but it is insufficient to provide a clear picture 
of human exposure across Europe. Category C substances have scarce HBM data for the European population and require greater knowledge on 
toxicological characteristics; some biomonitoring data from outside Europe exists. Category D substances have no HBM data from Europe, but 
some limited HBM data from outside Europe, which can inform on appropriate methods and target matrices. Category E substances have no HBM 
data. Of the 62 FRs, 9 are in Category A, 12 in Cat. B, 14 in Cat. C, 12 in Cat. D, and 15 in Cat. E. 

A detailed breakdown of the separate categorization based on the availability of toxicological information and HBM data which was combined to 
determine the overall categorization listed in Table 1 is available upon request, along with references to support the categorization. 

Table 1: Substances included in the substance group, listed according to availability of toxicology and human biomarker data, in category A, B, C, D, 
E substances 

Category Abbreviation/ 
Acronym Systematic name CAS No. Regulation 

A 

BDE-282 2,4,4'-Tribromodiphenyl ether 41318-75-6 Restricted under REACH and listed on 
Stockholm Convention 

BDE-47 2,2'4,4'-Tetrabromodiphenyl ether 5436-43-1 Restricted under REACH and listed on 
Stockholm Convention 

BDE-99 2,2',4,4',5-Pentabromodiphenyl ether 60348-60-9 Restricted under REACH and listed on 
Stockholm Convention 

BDE-100 2,2',4,4',6-Pentabromodiphenyl ether 189084-64-8 Restricted under REACH and listed on 
Stockholm Convention 

BDE-153 2,2',4,4',5,5'-Hexabromodiphenyl ether 68631-49-2 Restricted under REACH and listed on 
Stockholm Convention 

BDE-154 2,2',4,4',5,6'-Hexabromodiphenyl ether 207122-15-4 Restricted under REACH and listed on 
Stockholm Convention 

BDE-183 2,2',3,4,4',5',6-Heptabromodiphenyl ether 207122-16-5 Restricted under REACH and listed on 
Stockholm Convention 

BDE-209 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether  1163-19-5 Restricted under REACH and listed on 
Stockholm Convention 

HBCDD Hexabromocyclododecane  
3194-55-6, 
25637-99-4, 
1093632-34-8 

On REACH Authorisation List and listed on 
the Stockholm Convention 

                                                
2 Individual PBDE congeners are included rather than homologue groups (as in previous scoping document) in line with existing analytical methods and HBM data. 
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B 

TPHP Triphenyl phosphate 115-86-6 
Registered under REACH under the 1000-
10000 T/y tonnage band and under CoRAP 
(suspected ED, consumer use High 
(aggregated) tonnage, Wide dispersive use) 

TMPP Tricresyl phosphate 1330-78-5 
Registered under REACH, entered onto 
CoRAP for evaluation based on High 
(aggregated) tonnage, Suspected 
PBT/vPvB, Wide dispersive use.   

TCEP Tris-2-chloroethyl phosphate 115-96-8 

SVHC (Toxic for reproduction (Article 57c)) 
all uses require an Authorisation under 
Annex XIV of REACH from 21/08/2015. 
Being considered for a restriction under 
Article 69(2) 

TCIPP Tris(1-chloro-2-propyl) phosphate 13674-84-5 Registered under REACH 

TDCIPP Tris(1,3-dichloropropyl)phosphate 13674-87-8 
Registered under REACH, Entered onto 
CoRAP for evaluation in 2019 as potential 
endocrine disruptor 

TNBP Tri-n-butyl phosphate 126-73-8 
Registered under REACH, Entered onto 
CORAP for evaluation in 2012 based on 
CMR, High (aggregated) tonnage, Wide 
dispersive use 

TBBPA Tetrabromobisphenol A 79-94-7 

Registered under REACH under the 1000-
10000 T/y tonnage band and under CoRAP 
(suspected PBT/vPvB, endocrine disruptor, 
consumer use, exposure of environment, 
etc.) 

TBOEP Tri(2-butoxyethyl) phosphate 78-51-3 Registered under REACH under 1000-10000 
T/y tonnage band 

BEH-TEBP Bis(2-ethylhexyl)tetrabromophthalate 26040-51-7 

Registered under REACH under the 100-
1000 T/y tonnage band and under CoRAP 
(suspected PBT/vPvB and ED, Other hazard 
based concern, Exposure of environment, 
Wide dispersive use) 

EH-TBB 2-ethylhexyl-2,3,4,5-tetrabromobenzoate 183658-27-7 None 
BTBPE 1,2-bis(2,4,6-tribromophenoxy)ethane 37853-59-1 Not registered under REACH 

DDC-CO Dechlorane Plus 13560-89-9 Registered under REACH under 100-1000 
T/y tonnage band 

C 
TEHP Tris(2-ethylhexyl) phosphate 78-42-2 Registered under REACH under 1000-10000 

T/y tonnage band 

EHDPP 2-ethylhexyl diphenyl phosphate 1241-94-7 Registered under REACH under 1000-10000 
T/y tonnage band 
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DDC-DBF Dechlorane 602 (1,2,3,4,6,7,8,9,10,10,11,11-Dodecachloro-
1,4,4a,5a,6,9,9a,9b-octahydro-1,4:6,9 dimethanodibenzofuran) 31107-44-5 Not registered under REACH 

DBDPE Decabromodiphenylethane 84852-53-9 
Registered under REACH under the 10000-
100000 T/y tonnage band and under CoRAP 
(suspected PBT/vPvB, High (aggregated) 
tonnage and Wide dispersive use).  

TEP Triethyl phosphate 78-40-0 Registered under REACH 
HBB Hexabromobenzene 87-82-1 Not registered under REACH 
DBE-DBCH Tetrabromoethylcyclohexane 3322-93-8 Not registered under REACH 
DBHCTD Hexachlorocyclopentenyldibromocyclooctane 51936-55-1 Not registered under REACH 
PBEB Pentabromoethylbenzene 85-22-3 Not registered under REACH 

DDC-Ant 
Dechlorane 603 (1,2,3,4,5,6,7,8,12,12,13,13-Dodecachloro-
1,4,4a,5,8,8a,9,9a,10,10a-decahydro-1,4:5,8:9,10-
trimethanoanthracene) 

13560-92-4 None 

2,4,6-TBP 2,4,6-tribromophenol 118-79-6 
Not registered under REACH but under 
CoRAP (suspected PBT/vPvB, CRM, High 
(aggregated) tonnage, High RCR, Wide 
dispersive use) 

PBT Pentabromotoluene 87-83-2 Not registered under REACH 

PBB-Acr Pentabromobenzyl acrylate 59947-55-1 Registered under REACH under 100-1000 
T/y tonnage band 

V6 2,2-bis(chloromethyl)trimethylenebis[bis(2-chloroethyl) 
phosphate] 38051-10-4 Registered under REACH under the 100-

1000 T/y tonnage band 

D 

ip-TPP Isopropyl triphenyl phosphate 68937-41-7 Registered under REACH under the 1000-
10000 T/y tonnage band 

BPA-BDPP Bisphenol A bis(diphenylphosphate) 5945-33-5 Registered under REACH 
TBCO 1,2,5,6-tetrabromocyclooctane 3194-57-8 None 
PBP Pentabromophenol 608-71-9 Not registered under REACH 
DBP 2,4-dibromophenol 615-58-7 Not registered under REACH 

TIBP Tri-iso-butyl phosphate 126-71-6 Registered under REACH under the 1000-
10000 T/y tonnage band 

TnPP Tri-n-propyl-phosphate 513-08-6 Not registered under REACH 
TDBPP Tris(2,3-dibromopropyl) phosphate 126-72-7 Restricted under REACH 
CDP Cresyl diphenyl phosphate 26444-49-5 Not registered under REACH 

HCTBPH Dechlorane 604 (1,2,3,4,7,7-hexachloro-5-(2,3,4,5-
tetrabromophenyl)-bicyclo[2.2.1]hept-2-ene) 34571-16-9 Not registered under REACH 
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OBTMPI Octabromotrimethyphenyl indane 

1084889-51-9, 
1025956-65-
3,893843-07-7, 
155613-93-7 

Not registered under REACH 

TBX 2,3,5,6-tetrabromo-p-xylene 23488-38-2 Not registered under REACH 

E 

DBNPG Dibromoneopentylglycol  3296-90-0 Registered under REACH under the 100-
1000 T/y tonnage band 

TDBP-TAZTO Tris(2,3-dibromopropyl)isocyanurate 52434-90-9 Not registered under REACH 
RBDPP Resorcinol bis(diphenyl phosphate) 57583-54-7 Not registered under REACH 

TTBNPP Tris(tribromoneopentyl)phosphate 19186-97-1 Registered under REACH under the 100-
1000 T/y tonnage band 

EBTEBPI N,N’-ethylenebis(tetrabromophthalimide) 32588-76-4 

Registered under REACH under the 100-
1000 T/y tonnage band and under CoRAP 
(suspected PBT/vPvB, consumer use, 
Exposure of environment, Exposure of 
workers, Wide dispersive use) 

HEEHP-TEBP 2-(2-hydroxyethoxy)ethyl 2-hydroxypropyl 3,4,5,6-
tetrabromophthalate 20566-35-2 Registered under REACH under 100 – 1000 

T/y 

TTBP-TAZ 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine 25713-60-4 Not registered under REACH 

  Melamine polyphosphate  20208-95-1, 
218768-84-4 Not registered under REACH 

  Diethylphosphinic acid  813-76-3 Not registered under REACH 

BDBP-TAZTO 1,3-bis(2,3-dibromopropyl)-5-(2-propen-1-yl)-1,3,5-triazine-
2,4,5(1H,3H,5H)-trione 75795-16-3 None 

4’-PeBPO-
BDE208 Pentabromophenoxy-nonabromodiphenyl ether  58965-66-5 Not registered under REACH 

TBNPA Tribromoneopentyl alcohol  1522-92-5 Registered under REACH under 100 – 1000 
T/y 

HBCYD Hexabromocyclodecane  25495-98-1 None 
DBS Dibromostyrene  31780-26-4 Not registered under REACH 

DBP-TAZTO 1-(2,3-dibromopropyl)-3,5-diallyl-1,3,5-triazine-
2,4,6(1H,3H,5H)-trione  57829-89-7 None 
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Table 2: Compounds recommended to remove from priority list.  
Category Abbreviation/ 

Acronym 
Systematic name CAS No. Notes 

NA Mirex/Dechlorane Perchloropentacyclodecane 2385-85-5 

Mirex was previously listed in FR target 
list, however it is banned under the 
Stockholm Convention, and has not 
been in use in EU for >35 years. It is 
recommended to be excluded from 

further HBM activities. 

 

Table 3: Compounds to be considered for addition to priority list.  

Category Abbreviation/ 
Acronym Systematic name CAS No. Notes 

E  benzene, ethenyl-, polymer with 1,3-butadiene, brominated 1195978-93-8 

Suggested by ECHA; selected by a large 
part of the Expanded Polystyrene (EPS)  
and Extruded Polystyrene (XPS) Industry as 
replacement to HBCDD, suspected 
persistence (not registered under REACH 
because a polymer) 

E  1,1'-(isopropylidene)bis[3,5-dibromo-4-(2,3-
dibromopropoxy)benzene] 21850-44-2 

Suggested by ECHA; registered under 
REACH under the 1000-10000 T/y tonnage 
band and under CoRAP (suspected 
PBT/vPvB, endocrine disruptor, High 
(aggregated) tonnage) 

E  1,1'-(isopropylidene)bis[3,5-dibromo-4-(2,3-dibromo-2-
methylpropoxy)benzene] 97416-84-7 

Suggested by ECHA; registered under 
REACH under the 100-1000 T/y tonnage 
band and under CoRAP (suspected 
PBT/vPvB, endocrine disruptor, Exposure of 
environment) 

E  bis(α,α-dimethylbenzyl) peroxide 80-43-3 

Suggested by ECHA; used  as a flame 
retardant synergist; registered under 
REACH under the 10000-100000 tonnage 
band and under CoRAP (suspected 
PBT/vPvB, Consumer use, Exposure of 
environment, Exposure of workers, High 
(aggregated) tonnage, High RCR, Wide 
dispersive use) 
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E  (pentabromophenyl)methyl acrylate 59447-55-1 
Suggested by ECHA, registered under 
REACH under the 100-1000 T/y tonnage 
band 

E  2-Butyne-1,4-diol, polymer with 2-(chloromethyl)oxirane, 
brominated, dehydrochlorinated, methoxylated 68441-62-3 

Suggested by ECHA, registered under 
REACH under the 1,000-10,000 T/y tonnage 
band 

E  2,2,6,6-tetrakis(bromomethyl)-4-oxaheptane-1,7-diol 109678-33-3 Suggested by ECHA, registered under 
REACH under a confidential tonnage band 
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4. Policy-related questions 
 

1. What are current HBM levels of legacy/regulated FRs (e.g., PBDEs and HBCDD)? How do 
these compare to any historical records? Is the current legislative framework and proposed 
actions leading to a significant decline in restricted compounds and is this uniform across the 
EU? 

2. What is the exposure of the European population to current use FRs? In particular, what is the 
exposure of sensitive sub-groups (e.g., infants and children)? 

3. How do the levels of legacy FRs compare to levels of new/emerging FRs? Is any temporal or 
spatial trend observed? Can we relate this to use patterns and/or production volume? 

4. How does exposure to FRs differ between adults and children, males and females? 
5. How does exposure differ by geographic area within Europe? Do countries/regions have 

different FR exposure levels? 
6. Are there one or more occupationally exposed sub-groups? What occupations are associated 

with high exposure to FRs? 
7. Is elevated exposure to FRs associated with particular consumption patterns or lifestyles? 
8. What are the relevant exposure pathways for FRs, e.g., diet, air, water, indoor environmental 

exposure? 
9. Do certain flame retardants co-occur in HBM matrices? 
10. What current information is available regarding toxicity of FRs, both as individual compounds 

and as the mixtures of FRs typically occurring in indoor environments and diet? 
11. Can exposure to FRs be linked with any adverse health effects? 
12. What are the population groups most at risk?  
13. As FR market shifts towards replacement/alternative FRs, does human exposure reflect that 

trend? E.g., DBDPE as replacement for BDE-209;  
14. What additional FRs should be prioritized for further information regarding exposure and/or 

toxicity? How can use and risk information be combined to identify and prioritize knowledge 
gaps for further assessment? 

15. Can reference values be established for any FRs? 
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5. Research Activities to be undertaken 
 

The list of FRs is extensive, and not fixed, as new FRs are identified in human and environmental 
matrices on a regular basis. Therefore, flexibility must be maintained in the list of relevant and 
priority compounds. However, of the current list of 62 FRs, we highlight 20 individual compounds to 
receive attention based on evidence of toxicity but a lack of HBM data. 

• TPHP, TMPP, TCEP, TCIPP, TDCIPP, TNBP, TBBPA, and TBOEP are Cat. B compounds 
for which available HBM data suggests significant human exposure, and there is sufficient 
evidence of toxicity to warrant concern 

• TEHP, EHDPP, DDC-DBF, ip-TPP, V6, 2,4,6-TBP and TDBPP are Cat. C and D 
compounds with very limited HBM data, and in some cases none at all within Europe, but 
suggestion of toxicological concern. 

• DBNPG, TDBP-TAZTO, RBDPP, melamine polyphosphate and EBTEBPI are Cat. E 
compounds for which no HBM data exists but toxicological evidence suggests concern. 

Additionally, we highlight the 6 compounds which entirely lack toxicological and HBM data: 
diethylphosphinic acid, BDBP-TAZTO, 4’-PeBPO-BDE208, HBCYD, DBS and DBP-TAZTO. These 
compounds should receive attention in the form of suspect screening to determine if they are 
present in any human matrices and warrant further attention. 
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Table 4: Listing of research activities to be carried out to answer the policy questions summed up in 1.3 
Policy 

question 
Substance  Available knowledge3 Knowledge gaps and activities needed 

1, 3, 4, 5, 6, 7, 
8, 11, 13, 15 

PBDEs 

(BDE-28, BDE-47, 
BDE-99, BDE-100, 
BDE-153, BDE-154, 
BDE-183, BDE-209) 

• Established analytical methods, widely available 
analytical standards, reference materials 

• Existing information on temporal trends and 
geographic differences in human matrices and 
exposure pathways (e.g, 26,33,55,56) 

• Biomonitoring data for PBDEs in a range of human 
matrices (primarily serum, maternal milk) in a large 
number of studies: 

o Sweden33,35,44,46,49,56–72 
o Norway51,73–80 
o Germany81–83 
o France31,84–87 
o Denmark86,88,89 
o Finland86,90,91 
o Belgium92–96 
o Netherlands97–101 
o Spain102–107 
o Poland108 
o Austria109 
o Czech Republic110–113 
o Italy114 
o UK47 
o Greece32,115 

Gaps: 

▸  Biomonitoring data for Southern and 
Central/Eastern Europe 

▸  Coherence and synthesis in data 
Activities: 

▸  Synthesis and/or meta-analysis of 
existing HBM data to identify time trends 
in exposure and possible regional 
differences. Inform on whether current 
regulatory structure can effectively lead 
to decreases in human exposure 

Statistical evaluation of average concentrations, 
time trends and potential variance between 
population subgroups both regional and at risk 
(meta-analysis). 

1, 3, 4, 5, 6, 7, 
8, 11, 13, 15 

HBCDD • Established analytical methods, widely available 
analytical standards, reference materials 

Gaps: 

▸  Biomonitoring data for Southern and 
Central/Eastern Europe 

▸  Coherence and synthesis in data 

                                                
3  Complete database of evaluated HBM knowledge is available upon request from flame retardants CGL 
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• Biomonitoring data for HBCDDs in many studies in a 
range of human matrices (primarily serum, maternal 
milk): 

o Belgium28,92–94,96 
o Norway28,51,77–80,116 
o Netherlands98–100 
o France84,86 
o UK47  
o Denmark86  
o Finland86 
o Sweden35,46,49,56,60 
o Germany83 
o Czech Republic111,112 
o Spain52 
o Greece32 

Activities: 

▸  Synthesis and/or meta-analysis of 
existing HBM data needed to identify 
time trends in exposure and possible 
regional differences. Inform on whether 
current regulatory structure can 
effectively lead to decreases in human 
exposure 

Statistical evaluation of average concentrations, 
time trends and potential variance between 
population subgroups both regional and at risk 
(meta-analysis). 

2, 3, 4, 5, 8, 9, 
10, 11, 13 

Cat. B Biomonitoring data for NBFRs and CFRs in milk, serum for 
selected countries, small study sizes: 
• France31  
• Germany117 
• Norway118,119 
• Netherlands97 
• Sweden46,72,120 
• UK47,121 
• Belgium96,121–123 
• Finland124 
• Greece125 
• Romania125 
• UK47 
• Ireland126 
• Czech Rep.112 
• Slovakia127 
• France31,84,128 

Many studies report only TBBPA or a sub-set of Cat. B FRs  
 

Interlaboratory validation exercises 

Development of SOPs for determination of 
compounds in target human matrices 

Synthesis of existing data regarding 
biomonitoring and exposure – evaluation of data 
gaps for regions and compounds.  

Screening of existing HBM projects or biobank 
archives for Cat. B substances with lack of HBM 
data. Particular data gap for Southern and 
Eastern Europe 
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Biomonitoring data for OPEs, usually OPE metabolites in urine. 
Studies usually report a sub-set of the OPEs; methods vary 
widely between studies 
• Norway36,118,129,130 
• Germany37,131,132 
• Finland124 
• Sweden133–136 
• Belgium137 

 Cat. C 
substances 

HBM data for individual locations, or based on small method 
development studies; variability in matrices and analytical 
methods; many values below detection limits: 

• TEHP118,124,129 
• EHDPP129,130,136 
• DDC-DBF31,76,117,119,122 
• DBDPE46,47,59,76,119,122,126,138 
• HBB46,76,119,122,126,127,138 
• DBE-DBCH46,47,59,127 
• DBHCTD76,119,127,139 
• PBEB46,59,127,138 
• DDC-Ant31,76,117,119,122 
• 2,4,6-TBP73,75,140 
• PBT59,127 
• PBB-Acr127 
• V6141 

Evaluation of published methods to determine 
validity and applicability. 

Assessment of HBM data quality – 
appropriateness of monitored matrices for target 
compounds 

Screening of existing data regarding 
biomonitoring and exposure for all target FR – 
evaluation of data gaps for regions and 
compounds.  

Screening of existing HBM projects or biobank 
archives for Cat. C substances.  

2, 9, 10, 14 Cat. D 
substances 

Limited HBM data, often none from Europe: 
• OBTMPI139,142 
• TIBP129,143 
• TBX46,59,139,144 
• TBCO127 
• HCTBPH139,145 
• BPA-BDPP146 
• ip-TPP147 
• PBP140 
• TnPP148,149 

Evaluation of existing methods, matrices to 
provide recommendations for future screening or 
method development. 

Screen (semi-quantitative) for presence of 
compounds in human and/or environmental 
matrices, using existing biobank archives where 
possible 

Develop validated methods to improve 
quantification for compounds that are 
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consistently identified or listed as high concern 
based on gathered toxicity information 

2, 14 Cat. E 
substances 

No available HBM or toxicity information for diethylphosphinic acid, 
BDBP-TAZTO, 4’-PeBPO-BDE208, HBCYD, DBS and DBP-
TAZTO 

Toxicity information but no HBM data for DBNPG, TDBP-TAZTO, 
RBDPP, TTBNPP, EBTEBPI, HEHP-TEBP, TTBP-TAZ, and 
melamine polyphosphate 

Screen (semi-quantitative) for presence of 
compounds in human and/or environmental 
matrices, using existing biobank archives where 
possible 

Develop validated methods to improve 
quantification for compounds that are 
consistently identified or listed as high concern 
based on gathered toxicity information 
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This document contains additional details regarding TCEP, TCIPP and TDCIPP as a 
supplement to the HBM4EU scoping document on flame retardants. 

 tris(2-chloroethyl) phosphate      CAS: 115-96-8 

TCEP 

Recent scientific studies described below emphasize (1) TCEP is consistently detected in 

areas that directly lead to human exposure (e.g., indoor air, dust), (2) high levels in these 

areas are associated with higher human exposure based on biomonitoring data, and (3) 

TCEP is concluded to be a reproductive toxicant, thus the evidence of widespread human 

exposure suggests concern. 

TCEP is consistently detected in indoor dust in Europe and North America (Fang et al., 2013; 
Stapleton et al., 2014; Vykoukalová et al., 2017), including in 100% of 125 samples from 
homes of pregnant women in California (Castorina et al., 2017), and 100% of dust from 
school classrooms in Norway (Cequier et al., 2014). It was found in 14% of polyurethane 
foam samples collected from baby products on the North American market, at levels of up to 
5.94 mg/g (Stapleton et al., 2011). This stems from its independent use as a flame retardant, 
but also, TCEP is also an impurity in other OPEs, such as V6, where it was found 14% by 
weight in the V6 commercial mixture (Fang et al., 2013). 

Relationships between OPE levels in house dust and dermal wipes of children suggest that 
exposure pathways for OPEs will be similar to the known exposure pathways for PBDEs 
(e.g., hand to mouth behavior, dust ingestion) (Stapleton et al., 2014). TCEP was detected in 
97% of human placenta samples in a study in China, suggesting a pathway for prenatal 
exposure to TCEP (Ding et al., 2016).  

In the ECHA draft screening report (European Chemicals Agency, 2017), it is concluded 
that TCEP is “a reproductive toxicant with a significant toxic potential adverse to 

fertility”. A recent study using the male mouse model also supports this conclusion (Chen et 
al., 2015). Consistently, it is included in the list of substances of very high concern as “toxic 

for reproduction”.  

The ECHA report also concluded that TCEP is a carcinogen, with an unidentified, most 
likely non genotoxic, mode of action. Consistently US Environmental Protection Agency 
classifies TCEP with High hazard for carcinogenicity (Baker et al., 2015) and a recent cohort 
study concludes on statistically significant links between exposure to TCEP and risk of 
developing thyroid cancer (Hoffman et al., 2017a). It is also included in the proposition 65 list 
of chemicals known to cause cancer (Kammerer, 2017). To our knowledge, no clear mode of 
action has been identified.  

Finally, the ECHA report raises a concern for neurotoxicity. In agreement, two recent 
cohort studies establish a link between exposure to TCEP (alone, or as part of a sum of 4 
OPFRs) and cognitive performances in school children or social neurobehavior in pre-school 
children (Hutter et al., 2013; Lipscomb et al., 2017). 
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tris(2-chloro-1-methylethyl) phosphate     CAS: 13674-84-5 

TCIPP 

Recent scientific studies described below emphasize (1) TCIPP is consistently detected in 

areas that directly lead to human exposure (e.g., indoor air, dust), and (2) TCIPP is identified 

as having negative developmental and reproductive effects. Thus the evidence of 

widespread contamination of indoor environments combined with identified hazard suggests 

concern. 

TCIPP is frequently detected in indoor dust in Europe and North America (Vykoukalova et al. 
2017, Stapleton et al. 2014), including in 97.6% of 125 samples from homes of pregnant 
women in California (Castorina et al. 2017), and 100% of dust from school classrooms in 
Norway (Cequier et al. 2014). TCIPP is also detected on hand wipes (Liu et al. 2017) and 
was detected at highest concentrations of OPEs in indoor air in Czech homes (Vykoukalova 
et al. 2017), and the highest levels out of the OPEs in dust from homes in Norway (Cequier 
et al. 2014). 

Levels of OPEs in indoor dust differ between countries, suggesting differences in product use 
and indoor environments, but universally, TDCIPP is one of the major contributors to the 
signal of OPEs in indoor dust, and in particular for European countries (Brandsma et al., 
2014; Cequier et al., 2014; Dirtu et al., 2012). TCIPP is found at percent levels by weight in 
consumer products with direct use in residential indoor environments (Stapleton et al., 2009). 
TCIPP was detected at levels up to 14.4 mg/g in foam baby products from the North 
American market (Stapleton et al., 2011). 

In the ECHA draft screening report (European Chemicals Agency, 2017), it was 
concluded for TCIPP that a LOAEL of 99 mg/kg is derived for developmental toxicity 
and effects on fertility. In its recent report, US-EPA draws the same conclusion and 
classifies TCIPP as High hazard for Developmental and reproductive effects (Baker et al., 
2015).  

A LOAEL of 52 mg/kg was derived for carcinogenicity. We did not locate major new 
contributions, except for a cohort study that did not find a significant trend between levels of 
TCPP in dusts and odd ratios for thyroid cancer (Hoffman et al., 2017a).  

 

tris[2-chloro-1-(chloromethyl)ethyl] phosphate    CAS: 13674-87-8 

TDCIPP  

Recent scientific studies described below emphasize (1) its use as a flame retardant for 

polyurethane foam leads to significant use in products intended to be used for infants and 

young children, (2) TDCIPP is consistently detected in areas that directly lead to human 

exposure (e.g., indoor air, dust), (2) biomonitoring data suggest human exposure is 

increasing over the past 15 years, with higher exposure to children, and (4) TDCIPP is 

identified as having negative developmental and reproductive effects and high hazard for 

carcinogenicity. Thus the evidence of widespread human exposure suggests concern. 
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TDCIPP is frequently used as an additive flame retardant in foam products, particularly in the 
automotive industry and in some furnishings (van der Veen and de Boer, 2012). It is 
considered to be a replacement for now-banned pentaBDE, and was found in 36% of 
polyurethane foam samples collected from baby products on the North American market, at 
levels of up to 124 mg/g (Stapleton et al. 2011). TDCIPP is found at percent levels by weight 
in consumer products with direct use in residential indoor environments (Stapleton et al. 
2009), and in indoor dust is at μg/g levels, compared to ng/g levels typically found for 
restricted flame retardants such as polybrominated diphenyl ethers, even during their time of 
major use.  

TDCIPP is consistently detected in indoor dust in Europe and North America (Hoffman et al., 
2015; Stapleton et al., 2014; Vykoukalová et al., 2017), including in 100% of 125 samples 
from homes of pregnant women in California (Castorina et al. 2017), and 100% of dust from 
school classrooms in Norway (Cequier et al. 2014). TDCIPP was the dominant 
organophosphate flame retardant in samples of automobile dust collected in the Netherlands 
(Brandsma et al., 2014), with levels of up to 1 mg/g of dust. TDCIPP was the dominant flame 
retardant detected in dust from German automobiles (Brommer et al., 2012). Levels of 
organophosphate flame retardants in indoor dust differ between countries, suggesting 
differences in product use and indoor environments, but TDCIPP is one of the major 
contributors to the signal of OPEs in indoor dust in all studies (Brandsma et al. 2014) 

It is also consistently detected on hand wipes (Hoffman et al. 2015), indicating pathways for 
human exposure, and particularly for exposure to children, considering the higher rates of 
dust ingestion and frequency of hand-to-mouth behavior/mouthing of objects in young 
children. It is one of the highest median concentration organophosphate flame retardants 
detected in Swedish foods (Poma et al., 2017).  

Urinary metabolites (BDCIPP) in US exposure studies have increased dramatically over the 
period of 2002-2015 (Hoffman et al., 2017b), and considering similarities in consumer 
product markets between North America and Europe, although lacking human biomonitoring 
evidence to show a similar temporal trend in Europe, this would suggest similar high and 
increasing exposure to the European population can be expected. A 15-fold increase in 
levels of BDCIPP in urine is seen in US studies when comparing 2015 to 2002, indicating a 
similar increase in human exposure to TDCIPP. Australian biomonitoring showed widespread 
detection of TDCIPP metabolites in urine, and higher levels in children’s than adult urine, 

suggesting higher exposure to children (Van den Eede et al., 2014). A paired mother-child 
cohort in California found 15x higher urinary levels of BDCIPP in children than their mothers, 
and detection in 100% of urine samples suggesting widespread and elevated exposure to 
children (Butt et al., 2016). Concentrations of the metabolite BDCIPP in children’s urine from 

a Norwegian study was significantly correlated with the levels of TDCIPP in air and dust from 
the homes of the children (Cequier et al., 2015). 

It is concluded in the ECHA draft screening report (European Chemicals Agency, 2017) 
that “there is no concern for effects on male fertility”. We think this should be 
reconsidered in the light of new information. In its recent report, US-EPA classifies TDCPP 
with high hazard for Reproductive toxicity based on effects on seminal vesicles (LOAEL 
5mg/kg/d), testes and seminal product (Baker et al., 2015; Freudenthal and Henrich, 2000). 
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In addition, two recent cohort studies report a significant negative trend between paternal 
exposure to TDCPP and fertilization success (Carignan et al., 2018) or sperm quality 
(Meeker et al., 2013). Several studies also report effects on zebrafish fecundity upon 
exposure to low levels of TDCPP (Liu et al., 2013; Wang et al., 2015; Zhu et al., 2015). 
Finally, there are several evidences of endocrine disrupting activity, including two small 
cohort studies that report statistically significant associations between exposure to TDCPP 
and increased levels of prolactin (Meeker and Stapleton, 2010) or T3 and TSH (Meeker et 
al., 2013).  

In the ECHA draft screening report, a LOEAL of 5 mg/kg/d was derived for 
carcinogenicity, with an unidentified, most likely non genotoxic, mode of action. 
Consistently, it is classified with High hazard for carcinogenicity by US-EPA (Baker et al., 
2015) and it is included in the proposition 65 list of chemicals known to cause cancer 
(Kammerer, 2017). To our knowledge, no clear mode of action has been identified.  
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