

ICI / EQUAS REPORT

BFRs/round_03 (2019)

BFRs in serum

Version / date of issue	1 / 23-08-2019
Organiser	UCT (VSCHT) Prague, Department of Food Analysis and Nutrition
	Technická 3, Prague 6, 166 28
Coordinator	Jana Hajslova (jana.hajslova@vscht.cz)
Author(s) (Short name of institute)	Darina Lankova (VSCHT), Jana Pulkrabova (VSCHT), Jana Hajslova (VSCHT)
Approved by:	Jana Hajslova (VSCHT)

Table of contents

T	able of	contents	2
1	Sur	nmary	3
2	Intr	oduction	4
	2.1	Confidentiality	4
3	Cor	ntrol material	5
	3.1	Preparation of control material	5
	3.2	Homogeneity of control material	5
	3.3	Stability of control material	6
4	Org	panisational details	7
	4.1	Participants	7
	4.2	Dispatch and instructions	7
	4.3	Deviations from ICI/EQUAS SOPs	7
5	Dat	a evaluation	8
	5.1	False positives and <loq< td=""><td> 8</td></loq<>	8
	5.2	Assigned value	8
	5.3	Target standard deviation (σ_T)	8
	5.4	ICI/EQUAS standard deviation (RSD _R)	9
	5.5	Z-scores	9
	5.6	Proxy-Z-scores	9
6	Res	sults and discussion	. 11
	6.1	Results submitted by participants	. 11
	6.2	Assigned values and (target) standard deviations	. 11
	6.3	Assessment of laboratory performance	. 13
	6.4	Conclusions and recommendations	. 14
7	Ref	erences	. 15

Appendices

- Appendix 1: Homogeneity data
- Appendix 2: Stability data
- Appendix 3: Copy of letter of invitation
- Appendix 4: Copy of registration form for participation
- Appendix 5: Copy of letter/instructions sent together with test samples
- Appendix 6: Copy of acknowledgement of receipt sent together with test samples
- Appendix 7: Copy of method information form for participation in 3rd ICI/EQUAS
- Appendix 8: Scope and LOQs (ng/ml) as provided in the method information submitted by the laboratories
- Appendix 9: Assigned values and participant's performance
- Appendix 10: Graphical representation of the Z-scores
- Appendix 11: Reported results for which no assigned value and Z-scores were calculated

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 3
BFR in serum Round 3			

1 Summary

Within the frame of the HBM4EU project, an External Quality Assurance Scheme (EQUAS) was organised on the determination of 10 BFR biomarkers in serum. This was the 3rd ICI/EQUAS round for this substance group within the HBM4EU program.

In total 28 candidate laboratories were invited for this 3rd ICI/EQUAS and 14 laboratories submitted results.

In June 2019, each participant received one tube of burdened control materials of serum (level 1, low = L1), one tube of burdened control materials of serum (level 2, high = L2) and one tube of "blank" serum (non-spiked). The biomarker concentrations were mostly in the range of 0.09-2.6 ng/mL and 0.3-9.5 ng/mL for level 1 and level 2, respectively. The concentrations were chosen according to the review of relevant data on the occurrence of BFRs in serum of the European population published mostly during the last five years.

A homogeneity assessment showed that both materials were sufficiently homogeneous for the EQUAS testing. The stability test demonstrated no significant loss of the biomarkers during the course except for DP-syn at level 2, for which a statistic instability was detected.

The proficiency of the laboratories was assessed through Z-scores calculated using the expertassigned values, which were based on results obtained from the analysis of the control material by at least three expert laboratories selected by HBM4EU QAU. The expert-assigned values were calculated by averaging the values obtained by the expert BDE-47, BDE-153 and BDE-209. When the expert assigned-value couldn't be calculated (the number of participating expert labs was lower than three, or after the removal of outlier value the number of remaining experts was lower than three), then the consensus value based on the combined results of participants and expert laboratories was used as assigned value. This approach was used for α-HBCD, y-HBCD, DP-syn and DP-anti. In the case of TBBPA, DBDPE and 2,4,6-TBP no assigned value could be determined due to a limited number of obtained results both from experts and participants.

Laboratory results were rated using Z-scores in accordance with ISO 13528 and ISO 17043. A fixed fit-for-purpose relative target standard deviation (FFP-RSDR) of 25% was applied for proficiency assessment. **Table 1** presents a global overview of the proportion of satisfying results (-2 < Z-scores < 2). As mentioned above, in the case of TBBPA, DBDPE and 2,4,6-TBP no assessment of laboratories' performance was done.

Table 1: Percentages of satisfying results and number of successful labs for 3rd ICI/EQUAS evaluation

Biomarker	BDI	E 47	BDE	153	BDE	209	Syr	n-DP	Ant	ti-DP	α-Η	BCD	ү-Н	BCD	TBI	BPA	DB	DPE	2,4,6	S-TBP
Control material	L1 low	L2 high																		
% of satisfying z-scores	100	100	92	85	60	60	88	88	88	Х	86	100	86	100	Х	Х	Х	Х	Х	Х
No. of successful labs	13	13	11	11	6	6	7	7	7	Х	6	7	6	7	Х	Х	Х	Х	Х	Х

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 4
BFR in serum Round 3			

2 Introduction

Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS) are tools to assess the proficiency of laboratories, and the comparability and reliability of analytical methods. Participation in ICI/EQUAS forms an integral part of quality control, in addition to initial and on-going in-house method validation.

This 3rd ICI/EQUAS study has been organised within the frame of HBM4EU as a part of the Quality Assurance program for biomonitoring analyses, following protocols HBM4EU-SOP-QA-001 to 004 which are available through the HBM4EU website (https://www.hbm4eu.eu/online-library/). Within HBM4EU, participation in ICI/EQUAS exercises is mandatory for laboratories that will analyse HBM4EU samples.

This report describes the 3rd ICI/EQUAS for BFRs in serum, which was conducted as EQUAS and was organised by UCT Prague (University of Chemistry and Technology, Prague; VŠCHT, Vysoká škola chemicko-technologická v Praze), Department of Food Analysis and Nutrition.

For this 3rd ICI/EQUAS, expert laboratories had to be selected according to the selection criteria described in HBM4EU-SOP-QA-001 and in agreement with the QAU.

The selection of the most relevant BFRs was previously done in WP9, and has been described in Deliverable report 9.2 v1.1. Based on this, a set of 10 target biomarkers was compiled to be included in the EQUAS for BFR analysis in serum.

EQUAS is similar to ICI but instead of using the consensus value as assigned value, the mean concentration as established from data generated by at least three designated expert laboratories is used. As in an ICI, Z-scores are calculated as a measure of proficiency.

2.1 Confidentiality

In this report the identity of the participants and the information provided by them are treated as confidential. However, lab codes of the participants will be disclosed to the HBM-QAU for performance assessments.

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 5
BFR in serum Round 3			

3 Control material

3.1 Preparation of control material

The bovine serum was obtained from Sigma Aldrich (USA). A total of three litres were purchased and delivered in a frozen state. Before the spiking procedure, the background concentrations of targeted BFRs were investigated. For this purpose accredited methods (ISO17025) using both, GC-MS and LC-MS instruments, used. In the testing material (referred to as "blank" in the study) all target biomarkers were < LOQ.

Before the spiking procedure, the serum was thawed at room temperature (20 °C). Then it was stirred for 30 min in a 3 L beaker using a magnetic stirrer. After that, three aliquots of 700 mL were transferred into the 1 L beaker (one aliquot for "blank" – non-spiked, one for serum level 1 and one for serum level 2). Each standard of target biomarkers was appropriately diluted into acetone and individually spiked into the serum at level 1 and serum at level 2 using a calibrated Eppendorf Multipette®. During the spiking procedure, the serum was mixed using a magnetic stirrer for the whole time, and when all compounds had been added, subsequent mixing for 30 min was performed. The aliquots of 10 mL from "blank" serum / level 1 serum / level 2 serum were placed into the tube and later analysed for homogeneity testing. For the participants' analysis and stability testing, the aliquots of 5 mL were placed into the tube from each prepared material ("blank", level 1, level 2). All tubes were placed into the freezer at -18 °C before analysis / dispatch.

3.2 Homogeneity of control material

The homogeneity of the control material was tested according to HBM4EU-SOP-QA-002. Ten tubes of the control material at both levels were randomly selected from the freezer and each sample was analysed in duplicates. In brief, two extraction procedures were used. For GC-MS amenable BFR (BDE-47, BDE-153, BDE-209, DP-anti, DP-syn and DBDPE) isolation based on three-step solvent extraction using a mixture of n-hexane:diethylether (9:1, v/v) followed by the purification using a solid phase extraction (SPE) on a Florisil® column was used (for details, please see Svarcova et al. 2019). For LC-MS amenable compounds (α -HBCD, γ -HBCD, 2,4,6-TBP and TBBPA) simple extraction by acetonitrile with formic acid was applied.

The mean concentrations and relative standard deviations (RSDr) as obtained during a homogeneity testing are presented in **Table 2**. The statistical evaluation of level 1 and level 2 materials for each of the biomarkers is provided in **Appendix 1**. It was concluded that homogeneity was adequate for all quantified biomarkers at both levels.

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 6
BFR in serum Round 3			

Table 2: Concentration of BFRs as obtained during the homogeneity testing (details see Appendix 1)

Diomarkar	Biomarker Level '		Level 2 (high)
Diomarker	Mean (ng/mL)	RSDr (%)	Mean (ng/mL)	RSDr (%)
BDE-47	0.132	9	0.656	10
BDE-153	0.173	10	0.573	3
BDE-209	0.919	7	1.574	9
DP-syn	0.264	12	0.452	8
DP-anti	0.111	5	0.546	6
DBDPE	0.093	8	0.388	3
2,4,6-TBP	1.586	8	3.888	12
α-HBCD	0.596	9	4.593	7
γ-HBCD	0.284	10	5.413	5
TBBPA	2.527	7	9.537	4

3.3 Stability of control material

The stability of the control material was tested according to HBM4EU-QA-002. On the day of preparation of the control materials, randomly selected test serum samples of level 1 and level 2 were stored at -80 °C. After the deadline of submission of analysis results by the participants six test samples of both materials stored at -80 °C and six samples of both materials randomly selected from the -18 °C freezer, where the ICI samples were stored, were selected for analysis. For the analysis the previously described methods were used (see 3.2 Homogeneity of control material). The stability was evaluated using the Excel-sheet "HBM4EU ICI-EQUAS stability test CM v1". The results are presented in **Appendix 2**. Generally no problem with stability was detected for tested compounds except for DP-syn at level 2, for which a statistic instability was detected.

.

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 7
BFR in serum Round 3			

4 Organisational details

4.1 Participants

For the organisation of the 3rd ICI/EQUAS, the Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine (IPASUM) at Friedrich-Alexander University of Erlangen-Nuremberg (IPASUM) conducted a survey to find expert laboratories for the analysis of BFRs in serum willing to participate in the project. Then, IPASUM evaluated their eligibility and selected expert laboratories in agreement with the QAU and according to HBM4EU-SOP-QA-001.

UCT Prague contacted the selected expert laboratories and sent them invitation letters by e-mail. It was indicated that participation would be free of charge, and that those who subscribed to this EQUAS would receive a kit containing the test materials needed for analysis. The final number of expert labs was five, three from Europe (HBM4EU consortium) and two from outside Europe (USA and Canada).

Participants of this 3rd ICI/EQUAS were laboratories from the HBM4EU consortium (including linked-third parties) that had been included as candidate laboratories for analyses in the frame of the HBM4EU project through WP9 (Task 9.2, Deliverable 9.3). Invitation letters (**Appendix 3**) and registration forms (**Appendix 4**) were sent by e-mail on 29/04/2019 to 28 laboratories. For registration, each participant was asked to provide which of 10 biomarkers were included in their scope. The participants were informed that participation will be free of charge. The deadline for registration was 23/05/2019. Out of 28 invited laboratories, 14 performed the assays and submitted results..

4.2 Dispatch and instructions

Test materials were dispatched to the participants under frozen conditions (on dry ice) on 04/06/2019. Each participant received one tube of burdened control materials of serum (level 1), one tube of burdened control materials of serum (level 2) and one tube of "blank" serum (non-spiked). Each sample consisted of approximately 5 mL serum.

Moreover, a letter with instructions on sample handling (**Appendix 5**), a sample receipt form to be sent back to UCT Prague upon receipt of the test material (**Appendix 6**) as well as a result submission form and a method information form (**Appendix 7**) were sent to the participants by email. The latter form was used to extract relevant information related to the analytical method used for quantification.

Test materials were dispatched to the expert laboratories under frozen conditions (on dry ice) on the same date as for the participants, namely 04/06/2019. Each lab received six tubes of burdened control materials of serum (level 1), six tubes of burdened control materials of serum (level 2) and six tubes of "blank" serum (non-spiked). Each sample consisted of approximately 5 mL serum.

Participants and expert labs were asked to perform a single analysis of each sample using the same procedure as will be used for analysis of samples in the frame of HMB4EU and to report results following the instructions given. The deadline for submitting results was 15/07/2019.

4.3 Deviations from ICI/EQUAS SOPs

For this 3rd ICI/EQUAS, the HBM4EU-QA-SOPs (version 2) were followed. There were no deviations from these SOPs.

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 8
BFR in serum Round 3			

5 Data evaluation

5.1 False positives and <LOQ

Classification of false positives and biomarkers reported as "<LOQ-value" or "not detected" was done as described in HBM4EU-SOP-QA-003.

A result was assigned as false positive when all of the following conditions applied:

- 1) the biomarker was below the LOQ value as applied by the organiser, the expert laboratories, and the majority of the participants.
- 2) the biomarker was reported by the participant at a level clearly exceeding the LOQs mentioned under 1).

When a biomarker is reported as "<LOQ-value", AND an assigned value could be established for the biomarker in the control material, a further assessment was done to verify whether this result might be a false negative and to judge whether the LOQ is considered adequate (low enough) for analysis in the frame of HBM4EU. A result is a false negative when the LOQ of a biomarker is well below the assigned value, but the laboratory did not report a quantitative value. The LOQ is considered not adequate (too high) when:

- 1) the LOQ is substantially above the assigned value
- 2) the assigned value represents a realistic concentration of real samples in the frame of HBM4EU
- 3) quantitative determination is feasible by the majority of laboratories

In order to judge "<LOQ" results in a quantitative way, 'proxy-Z-scores' were calculated as described in 5.6.

5.2 Assigned value

For EQUAS studies, the concentration as established by expert laboratories is used as assigned value. The expert-assigned value is the target value based on analysis results obtained from analysis of the control material by at least three expert laboratories (see HBM4EU-SOP-QA-001). In brief, using the individual means of the expert laboratories, the mean of the means was calculated and its relative uncertainty. The mean of means was used as assigned value when the relative uncertainty was below $0.7^*\sigma_T$. If this condition was not met, and no outliers could be identified, then the uncertainty of the expert-derived mean was considered too high to be used as assigned value. The other requirement to be met was that the number of (remaining) individual expert means had to be at least three.

In case no expert value could be obtained, the consensus value derived from the combined results from both participants and expert laboratories was used as an alternative. In this case the consensus value was calculated using robust statistics as described for ICI in HBM4EU-SOP-QA-003.

5.3 Target standard deviation (σ_T)

For calculation of the Z-scores, a fit-for-purpose relative target standard deviation (FFP-RSD_R) of 25% of the assigned value was used as target standard deviation. This was the default indicated in HBM4EU-SOP-QA-003 and considered appropriate based on the outcome of the 1st and 2nd round.

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 9
BFR in serum Round 3			

5.4 ICI/EQUAS standard deviation (RSD_R)

To gain insight into the actual interlaboratory variability of each biomarker determination in this study, the robust relative standard deviation (RSD_R) was calculated based on the participants' results, as described in HBM4EU-SOP-QA-003. For this, the results of the expert laboratories were not included.

5.5 Z-scores

Z-scores were calculated according to SOP HBM4EU-SOP-QA-003.

$$Z = \frac{x - C}{\sigma_T} \tag{1}$$

with: Z = Z-score for the submitted analysis result;

x = result submitted by the laboratory;

C = expert-assigned value;

 σ_T = target standard deviation, here 0.25*C

In accordance with ISO 13528 and ISO 17043 and the deliverable D 9.4 "The Quality Assurance/Quality Control Scheme in the HBM4EU project, Z-scores are classified as presented in **Table 3**.

Table 3: Classification of Z-scores

$ Z \le 2$	Satisfactory
2 < Z < 3	Questionable
$ Z \ge 3$	Unsatisfactory

5.6 Proxy-Z-scores

'Proxy-Z-scores' are used here to judge "<LOQ" results in a quantitative way (see 5.1). The proxy-Z-scores' are calculated using the LOQ-value as result and equation (1). If no LOQ was specified, zero was used.

Proxy-Z-scores are classified as follows:

proxy- $Z \le -3$ false negative. Based on the LOQ provided, the laboratory should have been able to detect and quantify the biomarker. Performance is considered 'unsatisfactory'.

proxy-Z≥3 the LOQ is considered too high to be fit-for-purpose in the frame of HBM4EU analysis. It also means that the LOQ is too high in comparison with other laboratories. (Note: proxy-Z can only be calculated when an assigned value could be established. If this is the case, this inherently means that reliable quantitative determination at a certain low level is feasible). Performance is considered 'unsatisfactory'.

-3 ≤ proxy-Z < -2 possible false negative. Performance is considered 'questionable'.

2 < proxy-Z ≤ 3 the LOQ is relatively high in relation to HBM4EU analysis and compared to other laboratories. Performance is considered 'questionable'.

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 10
BFR in serum Round 3			

-2 ≤ proxy-Z ≤ 2 LOQ is within an acceptable range relative to the assigned value, adequate for HBM4EU analysis, and in line with the LOQs of the majority of the participating laboratories. Performance is considered 'satisfactory'.

I	ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 11
Ī	BFR in serum Round 3			

6 Results and discussion

6.1 Results submitted by participants

In total, 14 candidate laboratories agreed to participate in this study and all of them submitted results.

The scope of BFR biomarkers measured by the laboratories varied substantially: from two to all ten target compounds (**Appendix 8**). BDE-47 and BDE-153 were measured by 13 labs, BDE-209 by 10 labs, DP-syn and DP-anti by eight labs, α -HBCD and α -HBCD by seven labs, DBDPE by five labs, TBBPA by four labs and 2,4,6-TBP was analysed by three labs.

It is worth mentioning that in several cases the scope of biomarkers in the registration form did not match the scope of submitted results. Two labs did not report the results for DBDPE (PT3BFR05 and PT3BFR11), one lab for TBBPA (PT3BFR11) and two for BDE-209 (PT3BFR11 and PT3BFR14). On the other hand, one lab (PT3BFR04) was able to report the results for TBBPA, which was not selected in their registration form.

Regarding submitted LOQs, a very high variability between participating laboratories was found (**Appendix 8**). Specifically, the LOQ for BDE-47 was in the range of 0.0003-0.2 ng/mL, for BDE-153 0.0003-1 ng/mL, for BDE-209 0.0001-0.1 ng/mL, for α -HBCD 0.005-2.24 ng/mL, for γ -HBCD 0.005-0.669 ng/mL, for TBBPA 0.0004-0.005 ng/mL, for DP-syn and DP-anti 0.0001-0.1 ng/mL, for DBDPE 0.025-0.8 ng/mL and for 2,4,6-TBP 0.010-0.049 ng/mL.

The individual analysis results of the laboratories are included in **Appendix 9** and **Appendix 11**.

6.2 Assigned values and (target) standard deviations

The assigned value was the expert-assigned value as derived from replicate analysis of the control materials by five expert laboratories as described in 5.2. Since not all expert labs covered all 10 biomarkers, the number of expert labs for BDE-47, BDE-153 and BDE 209 was five, and for DP-syn and DP-anti it was three.

The relative uncertainty was below the 18% (calculated as $0.7^*\sigma T$) for BDE-47 (level 1 and level 2), BDE 153 (level 1 and level 2) and BDE 209 (level 2). The individual means of the expert labs were generally in good agreement with each other for these biomarkers. No outliers were identified.

In the case of BDE-209 at level 1 the relative uncertainty was 19%. Then the result from one expert lab was detected as an outlier (using Grubbs test). After exclusion of the outlier the relative uncertainty of results from the remaining four expert labs was 10% and met the requirement of minimum number of results for the establishment of the expert value.

For DP-syn and DP-anti at both levels the relative uncertainty of the expert-derived mean was in the range of 18.1 - 29%, which is too high to be used as assigned value. In the case of identification and removing of outliers, the requirement of the minimum number of experts will not be met (only two remaining labs). For this reason, the possibility of using the consensus value as an alternative to the expert-assigned value was investigated. The robust mean was determined as described for ICI in HBM4EU-QA-SOP-003, using the results of all laboratories (including expert labs). For DP-syn (level 1 and level 2) and for DP-anti (only level 1) this resulted in a sufficiently reliable assigned value suitable for determination of Z-scores. In the case of DP-anti (level 2), the uncertainty of the consensus value was not within the acceptable limits (u $\leq 0.7^*\sigma T$) with respect to use for statistical evaluation of the data and calculation of Z-scores. The data set for this biomarker is unfit for the laboratory's performance. Therefore, the consensus value was used as assigned value for DP-syn (level 1 and level 2) and DP-anti (level 1).

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 12
BFR in serum Round 3			

The similar approach was used for α -HBCD and γ -HBCD because the number of results from expert labs was below three and the consensus value was used as assigned value.

Finally, for TBBPA, 2,4,6-TBP and DBDPE the number of participating laboratories which tested these biomarkers in serum is too small to establish an assigned value. Moreover, in the case of DBDPE, the concentration in serum at both levels was too low, which resulted in most of the results being reported as < LOQ. For these three biomarkers no Z-scores or proxy-Z-scores could be determined.

In total, it was possible to establish assigned values for six biomarkers (BDE-47, BDE-153, BDE-209, α -HBCD, γ -HBCD and DP-syn) in both control materials and for one biomarker (DP-anti) at level 1. All assigned values and their uncertainties are included in **Appendix 9**.

The target standard deviation used for determination of the Z-scores was 25% (0.25*C) (see 5.3 and 5.5). To verify how this fixed target value compares to the actual interlaboratory variability of the results, the actual relative standard deviation (study RSD_R, robust statistics) derived from the participants' results (excluding the results from the expert labs) was calculated. The individual RSD_R's are included in **Appendix 9**. They ranged from 8% to 64% (median of all RSD_R's was 34%). In 9 out of 14 cases, the RSD_R exceeded the target standard deviation of 25%. The highest variability was observed for BDE-209, DP-syn and DP-anti at both levels.

From the data, it was also verified to what extent the robust mean of the participants deviated from the expert-value. Robust means with acceptable uncertainty could be derived in most cases except for TBBPA, 2,4,6-TBP and DBDPE. In general, the difference between the mean of the participants and the expert-assigned value was less than 20%. The only exception was BDE-209 at high concentration (difference of robust mean and expert value was 20.3%, 2.130 versus 1.771 ng/ml, respectively).

The calculated expert values and consensus values are summarized in **Table 4** and **Table 5**, respectively.

Table 4: Expert-assigned values, associated uncertainty and standard deviations

	Expert-assigned values			Expert-assigned values			
		Level 1 - low		Level 2 - low			
	BDE-47	BDE-153	BDE-209	BDE-47 BDE-153 BDE-2			
Expert value - mean of the mean (ng/ml)	0.151	0.184	1.197	0.644	0.549	1.771	
No. of expert labs	5	5	4(+1*)	5	5	5	
SD (ng/ml)	0.030	0.042	0.243	0.219	0.133	0.704	
RSD (%)	20	23	20	34	24	40	
u (%)	9	10	10	15	11	18	

^{*} The results from one expert lab were identified as outlier and were removed for the calculation of expert-derived value

Table 5: Consensus values, associated uncertainty and standard deviations

	Level 1 - low				Level 2 - high				
	α-HBCD	γ-HBCD	Syn-DP	Anti-DP	α-HBCD	γ-HBCD	Syn-DP	Anti-DP*	
Consensus value (ng/ml)	0.583	0.321	0.313	0.134	4.877	5.908	0.764	0.769	
No. of participants (+ nb. of expert labs)	7(+1)	7(+1)	8(+1)	8(+1)	7(+1)	7(+1)	8(+1)	8(+1)	
Robust SD (ng/ml)	0.115	0.029	0.045	0.032	0.941	0.594	0.310	0.389	
u (ng/ml)	0.051	0.013	0.019	0.013	0.416	0.262	0.129	0.162	
Target standard deviation 25%, σ₁ (ng/ml)	0.146	0.080	0.078	0.034	1.219	1.477	0.191	0.192	
u (%)	8.7	4.0	6.1	9.7	8.5	4.4	16.9	21.1	

^{*} u (0.162 ng/ml) of the consensus value for anti-DP was not within the acceptable limits $u \le 0.7 \text{ }^{*}\sigma\text{T}$ (0.162 > 0.135 ng/ml)

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 13
BFR in serum Round 3			

6.3 Assessment of laboratory performance

Z-scores could be calculated for six biomarkers (BDE-47, BDE-153, BDE-209, α -HBCD, γ -HBCD and DP-syn) in both control materials and for one biomarker (DP-anti) at level 1 (**Appendix 9**). A graphical presentation of the Z-scores is provided in **Appendix 10**. A summary of a number of laboratories that reported results and the number of satisfactory/questionable/unsatisfactory scores are presented in **Table 6**.

Only one laboratory (PT3BFR03) reported '<LOQ-value' for BDE-153 at level 1 (low). In this case, a proxy-Z-score was calculated. This is indicated in **Appendix 9** as a Z-score between brackets.

The determination of assigned values was not possible for DP-anti at high level because of the high uncertainty of the consensus value.

The calculation of expert values or consensus values was not possible for DBDPE, TBBPA and 2,4,6-TBP as explained above. For this reason, no Z-score were provided (**Appendix 11**).

As a global overview, the proportion of satisfying results (-2 < Z-score < 2) was from 60% to 100%. The highest proportion of unsatisfactory scores was achieved for BDE-209 at both levels. In general, the highest number of satisfactory scores was determined for BDE-47 (100% at both levels), BDE-153 (92% and 85% at low and high level, respectively), α -HBCD and γ -HBCD (for both biomarkers 86% and 100% at low and high level, respectively), DP-syn (88% at both levels, respectively) and DP-anti (88% at low level).

Table 6: Summary of BFRs results assessment

Biomarker	Control material	No. of participants	No. of quantitative results	No. of satisfactory scores	No. of questionable scores	No. of unsatisfactory scores	% of satisfying z-scores	No. of successful labs
BDE 47	Level 1	13	13	13	0	0	100	13
BUE 47	Level 2	13	13	13	0	0	100	13
BDE 153	Level 1	13	12	11	1	0	92	11
PDE 199	Level 2	13	13	11	0	2	85	11
BDE 209	Level 1	10	10	6	1	3	60	6
DDE 209	Level 2	10	10	6	1	3	60	6
Cum DD	Level 1	8	8	7	1	0	88	7
Syn-DP	Level 2	8	8	7	1	0	88	7
Anti-DP	Level 1	8	8	7	0	1	88	7
Allu-DP	Level 2	8	8	no score	no score	no score	Х	Х
α-HBCD	Level 1	7	7	6	1	0	86	6
α-пьсь	Level 2	7	7	7	0	0	100	7
y-HBCD	Level 1	7	7	6	0	1	86	6
ү-пьсь	Level 2	7	7	7	0	0	100	7
TBBPA	Level 1	3	3	no score	no score	no score	Х	Х
IDDPA	Level 2	3	3	no score	no score	no score	Х	Х
DBDPE	Level 1	4	1	no score	no score	no score	Х	Х
DRDAE	Level 2	4	2	no score	no score	no score	Х	Х
2,4,6-TBP	Level 1	3	3	no score	no score	no score	Х	Х
2,4,0-1 DP	Level 2	3	3	no score	no score	no score	Х	Х

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 14
BFR in serum Round 3			

6.4 Conclusions and recommendations

In this HBM4EU 3rd ICI/EQUAS on BFR biomarkers in serum, 28 laboratories were invited, of which 14 submitted results. The overall participation rate was 50%. Three test materials were provided to each participant ("blank" material, spiked material at low level and spiked material at high level).

The scope of the laboratories varied substantially (from two to ten) and in most cases did not cover all target biomarkers. Only one laboratory was able to provide results for all BFR.

Evaluation of laboratories' performance was realized for seven biomarkers – BDE-47, BDE-153, BDE-209, DP-syn, α -HBCD and γ -HBCD at both levels. For DP-anti the evaluation was possible only for level 1. The proportion of satisfying results (-2 < Z-score < 2) was from 60% to 100% and it is summarized in **Table 6**. In general, the highest number of satisfactory scores was determined for BDE-47 (100% at both levels), BDE-153 (92% and 85% at low and high level, respectively), α -HBCD and γ -HBCD (for both biomarkers 86% and 100% at low and high level, respectively), DP-syn (88% at both levels, respectively) and DP-anti (88% at low level).

The determination of assigned values was not possible for DP-anti at high level because of the high uncertainty of the consensus value.

Assigned values could not be determined for TBBPA, DBDPE and 2,4,6-TBP either due to a low number of reported results by expert laboratories and participants.

In this 3rd round, in contrast to 2nd round, it was not possible to assess performance for DP-anti at high level, because the uncertainty of the consensus value was not within the acceptable limits with respect to use for statistical evaluation of the data and calculation of Z-scores.

Obtained results confirm the reality of a quite significant core network of satisfactory laboratories for BDE-47, BDE-153, BDE-209, α -HBCD and γ -HBCD. However, compared to these biomarkers, there is a lower number of labs with satisfactory performance for DP-syn and DP-anti. Regarding TBBPA, DBDPE and 2,4,6-TBP globally, there is a low number of laboratories which analysed these compounds in serum.

.

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 15
BFR in serum Round 3			

7 References

HBM4EU-SOP-QA-001 "Organisation of Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS) of interlaboratory studies"

HBM4EU-SOP-QA-002 "Preparation of control materials for Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS)"

HBM4EU-SOP-QA-003 "Evaluation of results from Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS)"

HBM4EU-SOP-QA-004 "Reporting of results of Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS)"

ISO/IEC 17043:2010, Conformity assessment – General requirements for proficiency testing

ISO 13528, 2015, Statistical methods for use in proficiency testing by interlaboratory comparison.

Svarcova, A., Lankova, D., Gramblicka, T., Stupak, M., Hajslova, J., & Pulkrabova, J. (2019). Integration of five groups of POPs into one multi-analyte method for human blood serum analysis: An innovative approach within biomonitoring studies. Science of The Total Environment.

Thompson, M., 2000, Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing, Analyst, 125, 385-386.

Thompson M., Ellison R. and Wood, R., 2006, The International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories, Pure Appl. Chem, 78(1), 145-196.

Analytical Methods Committee, 1989a, Robust statistics - How not to reject outliers Part 1. Basic concepts, Analyst, 114, 1693-1697.

Analytical Methods Committee, 1989b, Robust statistics - How not to reject outliers Part 2. Interlaboratory trials, Analyst, 114, 1699-1702.

Official Methods of Analysis Program Manual, 2002, Appendix D: Guidelines for Collaborative Study Procedures To Validate Characteristics of a Method of Analysis. Association Of Analytical Communities International. http://www.aoac.org/vmeth/Manual_Part_6.pdf.

ICI / EQUAS REPORT Round 3	Version: 1	Date of issue: 23-08-2019	Page: 16
BFR in serum Round 3			

Appendix 1: Homogeneity data

	BDE 47 - leve	el 1	BDE 153 - lev	el 1	BDE 209 - lev	el 1	DP-syn - level 1		DP-anti - leve	el 1	DBDPE - leve	el 1
	Replicate 1	Replicate 2	Replicate 1	Replicate 2	Replicate 1	Replicate 2	Replicate 1	Replicate 2	Replicate 1	Replicate 2	Replicate 1	Replicate 2
1	0.148	0.148	0.172	0.164	0.987	0.984	0.270	0.251	0.102	0.120	0.083	0.095
2	0.153	0.134	0.186	0.176	0.997	1.050	0.241	0.247	0.109	0.109	0.086	0.091
3	0.142	0.147	0.162	0.190	0.997	0.998	0.221	0.234	0.108	0.109	0.095	0.089
4	0.124	0.122	0.166	0.189	0.895	0.936	0.226	0.324	0.109	0.108	0.081	0.099
5	0.126	0.125	0.157	0.185	0.825	0.971	0.302	0.294	0.107	0.107	0.101	0.103
6	0.126	0.124	0.158	0.152	0.842	0.843	0.293	0.269	0.108	0.108	0.094	0.088
7	0.137	0.106	0.172	0.222	0.853	0.894	0.293	0.241	0.107	0.108	0.096	0.105
8	0.130	0.122	0.161	0.151	0.895	0.892	0.283	0.273	0.125	0.119	0.084	0.097
9	0.120	0.131	0.180	0.160	0.930	0.869	0.272	0.284	0.116	0.115	0.094	0.083
10	0.151	0.131	0.178	0.185	0.847	0.885	0.203	0.253	0.106	0.116	0.099	0.102
Grand mean	0.132		0.173		0.919		0.264		0.111		0.093	
Cochran's test												
С	0.6043		0.4761		0.6489		0.589187918		0.6767		0.3414	
Ccrit	0.8674		0.8674		0.8674		0.8674		0.8674		0.8674	
C < Ccrit ?	no outliers		no outliers		no outliers		no outliers		no outliers		no outliers	
στ	0.0323		0.0433		0.2299		0.0659		0.0277		0.0233	
S _x	0.0087		0.0125		0.0647		0.0257		0.0052		0.0059	
s _w	0.0099		0.0164		0.0451		0.0319		0.0053		0.0077	
S _s	0.0052		0.0047		0.0563		0.0125		0.0037		0.0022	
Critical	0.0085		0.0114		0.0607		0.0174		0.0073		0.0062	
Ss < critical ?	homogeneity adequate		homogeneity adequate		homogeneity adequate		homogeneity adequate		homogeneity adequate		homogeneity adequate	
sw < 0.5 σT?	method suited		method suited		method suited		method suited		method suited		method suited	
	BDE 47 - leve	el 2 BDE 153 - level 2		el 2	BDE 209 - lev	el 2	DP-syn - level 2		DP-anti - leve	el 2	DBDPE - leve	el 2
	Replicate 1	Replicate 2	Replicate 1	Replicate 2	Replicate 1	Replicate 2	Replicate 1	Replicate 2	Replicate 1	Replicate 2	Replicate 1	Replicate 2
1	0.663	0.708	0.598	0.571	1.522	1.665	0.488	0.518	0.567	0.547	0.370	0.375
2	0.613	0.766	0.562	0.582	1.829	1.742	0.426	0.448	0.522	0.541	0.389	0.384
3	0.717	0.695	0.574	0.607	1.861	1.547	0.446	0.450	0.511	0.455	0.397	0.371
4	0.635	0.552	0.581	0.594	1.459	1.537	0.429	0.450	0.522	0.541	0.378	0.386
5	0.626	0.622	0.574	0.563	1.476	1.586	0.405	0.404	0.557	0.511	0.399	0.392
6	0.643	0.604	0.553	0.564	1.463	1.474	0.500	0.429	0.582	0.541	0.378	0.387
7	0.663	0.708	0.560	0.543	1.644	1.393	0.460	0.406	0.590	0.597	0.402	0.407
8	0.613	0.766	0.558	0.610	1.696	1.711	0.488	0.518	0.582	0.545	0.394	0.405
9	0.717	0.695	0.580	0.558	1.562	1.465	0.426	0.448	0.555	0.590	0.400	0.380
10	0.565	0.558	0.578	0.550	1.501	1.347	0.446	0.450	0.522	0.547	0.374	0.398
Grand mean	0.656		0.573		1.574		0.452		0.546		0.388	
Cochran's test			2.2.2									
C	0.3883		0.3955		0.4090		0.4491		0.2784		0.3310	
Ccrit	0.8674		0.8674		0.8674		0.8674		0.8674		0.8674	
C < Ccrit ?	no outliers		no outliers		no outliers		no outliers		no outliers		no outliers	
σ _T	0.1444		0.1261		0.3463		0.0994		0.1202		0.0854	
S _x	0.0515		0.0131		0.1258		0.0309		0.0261		0.0082	
S _W	0.0550		0.0185		0.1256		0.0234		0.0237		0.0107	
S _S	0.0337		0.0009		0.0956		0.0260		0.0200		0.0033	
	0.0433				0.1030		0.0208					
Critical	0.0433 homogeneity adequate		0.0378 homogeneity adequate		0.1039 homogeneity adequate		0.0298 homogeneity adequate		0.0361 homogeneity adequate		0.0256 homogeneity adequate	

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 17
BFR in serum Round 3			

Appendix 1: Homogeneity data (continued)

	2,4,6-TBP - le	vel 1	α-HBCD - lev	el 1	γ-HBCD - lev	el 1	TBBPA - leve	/el 1	
	Replicate 1	Replicate 2	Replicate 1	Replicate 2	Replicate 1	Replicate 2	Replicate 1	Replicate 2	
1	1.492	1.442	0.568	0.576	0.313	0.338	2.539	2.503	
2	1.458	1.477	0.598	0.494	0.331	0.237	2.472	2.638	
3	1.580	1.613	0.580	0.567	0.288	0.264	2.462	2.547	
4	1.673	1.620	0.582	0.686	0.271	0.281	2.577	2.458	
5	1.489	1.603	0.570	0.527	0.274	0.278	2.653	2.629	
6	1.683	1.518	0.591	0.568	0.292	0.287	2.637	2.382	
7	1.652	1.692	0.621	0.694	0.320	0.301	2.452	2.308	
8	1.445	1.460	0.639	0.551	0.281	0.279	2.122	2.547	
9	1.492	1.742	0.625	0.649	0.296	0.260	2.398	2.631	
10	1.700	1.887	0.564	0.668	0.249	0.246	2.564	3.020	
Grand mean	1.586		0.596		0.284		2.527		
Cochran's test									
C	0.4294		0.2239		0.7490		0.3588		
Ccrit	0.8674		0.8674		0.8674		0.8674		
C < Ccrit ?	no outliers		no outliers		no outliers		no outliers		
σ _T	0.3965		0.1311		0.0625		0.5560		
S _X	0.1070		0.0386		0.0211		0.1264		
Sw	0.0855		0.0493		0.0243		0.1703		
S _S	0.0883		0.0166		0.0122		0.0386		
Critical	0.1047		0.0393		0.0188		0.1668		
Ss < critical?	homogeneity adequate		homogeneity adequate		homogeneity adequate		homogeneity adequate		
sw < 0.5 σT ?	method suited		method suited		method suited		method suited		
	2,4,6-TBP - le	vel 2	α-HBCD - lev	el 2	γ-HBCD - lev	el 2	TBBPA - leve	el 2	
	Replicate 1	Replicate 2	Replicate 1	Replicate 2	Replicate 1	Replicate 2	Replicate 1	Replicate 2	
1	4.046	3.901	4.838	4.647	5.572	5.587	10.193	9.115	
2	3.971	4.262	5.021	4.179	4.995	5.623	9.975	9.989	
3	3.402	4.112	4.858	4.212	5.371	5.192	9.738	9.863	
4	3.192	3.260	4.003	4.216	5.651	5.168	9.091	9.366	
5	3.055	4.121	4.239	4.152	4.896	4.838	9.486	9.917	
6	3.604	3.588	4.686	4.784	5.693	5.305	9.324	9.286	
7	4.071	4.165	4.909	4.967	5.252	5.667	9.412	9.170	
8	3.544	4.253	4.273	4.929	5.450	5.910	9.553	9.452	
9	4.104	4.329	4.526	5.037	5.436	5.410	9.640	9.574	
10	4.893	3.894	4.699	4.678	5.704	5.539	9.797	8.797	
Grand mean	3.888		4.593		5.413		9.537		
Cochran's test	0.000		4.000		0.410		0.001		
C C	0.3433		0.3691		0.3220		0.4621		
Ccrit	0.8674		0.8674		0.8674		0.4621		
C < Ccrit ?	no outliers		no outliers		no outliers		no outliers		
στ	0.9721		1.1482		1.3532		2.3842		
	0.3506		0.2586		0.2306		0.2541 0.3546		
S _X							11.35/16		
s _w	0.4068		0.3100		0.2476				
S _w	0.4068 0.2004		0.1371		0.1500		0.0410		
s _w s _s Critical	0.4068 0.2004 0.2566		0.1371 0.3031		0.1500 0.3573		0.0410 0.6294		
S _w	0.4068 0.2004		0.1371		0.1500		0.0410		

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 18
BFR in serum Round 3			

Appendix 2: Stability data

Biomarker	BDE 47 level 1		BDE 47 level 2		BDE 153 level 1		BDE 153 level 2		BDE 209 level 1		BDE 209 level 2	T
time (days)	0	40	0	40	0	40	0	40	0	40	0	40
	0.177	0.148	0.582	0.635	0.190	0.187	0.553	0.562	0.984	0.895	1.665	1.797
	0.163	0.148	0.581	0.552	0.189	0.189	0.563	0.607	0.997	0.936	1.861	1.810
	0.133	0.153	0.574	0.626	0.185	0.176	0.495	0.581	0.936	0.825	1.459	1.664
	0.175	0.134	0.564	0.622	0.222	0.196	0.578	0.563	0.971	0.971	1.829	1.917
	0.111	0.142	0.610	0.643	0.180	0.163	0.515	0.564	0.843	0.842	1.696	1.834
	0.108	0.147	0.578	0.604	0.185	0.173	0.613	0.578	0.895	0.843	1.711	1.827
Average	0.145	0.145	0.582	0.614	0.192	0.181	0.553	0.576	0.937	0.885	1.704	1.808
Std dev	0.031	0.006	0.015	0.033	0.015	0.012	0.043	0.017	0.059	0.059	0.143	0.082
x0-xa (difference)	0.001	-0.001	0.013	-0.032	0.013	0.012	0.043	-0.023	0.033	0.053	0.143	-0.105
		-0.001		-0.032		0.011		-0.023		0.032		-0.103
Test 'consequential instability':		0.000		0.400		0.040		0.400		0.000		0.075
σH		0.032		0.128		0.042		0.122		0.206		0.375
0,3*σH		0.010		0.038		0.013		0.036		0.062		0.112
x0-xa<0,3*σH? (consequential instability)		NO		NO		NO		NO		NO		NO
Test 'significant difference':												
t		0.071		2.162		1.404		1.217		1.534		1.557
t-crit		2.228		2.228		2.228		2.228		2.228		2.228
Significant difference		NO		NO		NO		NO		NO		NO
Biomarker	DP anti level 1		DP anti level 2		DP syn level 1		DP syn level 2		DBDPE level 1		DBDPE level 2	
time (days)	0	40	0	40	0	40	0	40	0	40	0	40
une (days)												
	0.120	0.125	0.522	0.557	0.284	0.324	0.518	0.655	0.083	0.095	0.389	0.375
	0.109	0.119	0.511	0.547	0.283	0.302	0.518	0.638	0.095	0.089	0.397	0.371
	0.107	0.116	0.522	0.522	0.294	0.294	0.450	0.605	0.101	0.103	0.399	0.386
	0.108	0.115	0.511	0.541	0.293	0.293	0.500	0.631	0.094	0.105	0.378	0.387
	0.119	0.106	0.541	0.511	0.272	0.269	0.460	0.593	0.084	0.102	0.394	0.405
	0.115	0.116	0.555	0.455	0.253	0.293	0.426	0.536	0.099	0.091	0.400	0.380
Average	0.113	0.116	0.527	0.522	0.280	0.296	0.479	0.610	0.093	0.098	0.393	0.384
Std dev	0.006	0.006	0.018	0.037	0.016	0.017	0.038	0.043	0.008	0.007	0.008	0.012
x0-xa (difference)	0.000	-0.003		0.005	5.5.5	-0.016		-0.131	0.000	-0.005	5.555	0.009
Test 'consequential instability':		-0.003		0.003		-0.010		-0.131		-0.003		0.003
		0.025		0.116		0.062		0.105		0.020		0.086
σH				0.116				0.105				
0,3*σH		0.007		0.035		0.018		0.032		0.006		0.026
x0-xa<0,3*σH? (consequential instability)		NO		NO		NO		YES		NO		NO
Test 'significant difference':												
t		0.926		0.286		1.666		5.576		1.169		1.484
t-crit		2.228		2.228		2.228		2.228		2.228		2.228
Significant difference		NO		NO		NO		YES		NO		NO
										-114		
Biomarker	2,4,6-TBP level 1		2,4,6-TBP level 2		alpha HBCD level 1		alpha HBCD level 2	,	gama HBCD level	1 (gama HBCD level	2
time (days)	0	40	0	40	0	40	0	40	0	40	0	40
uno (dayo)	1.673	1.650	5.021	5.014	0.568	0.619	4.647	4.839	0.288	0.289	5.572	5.542
	1.683	1.849	4.858	4.403	0.576	0.633	4.212	4.785	0.281	0.283	5.587	5.174
										0.203		
	1.692	1.803	4.909	5.082	0.582	0.602	4.838	4.643	0.274		4.995	5.108
	1.742	1.811	4.967	5.349	0.580	0.567	4.858	5.091	0.292	0.312	5.623	5.293
	1.700	1.861	4.929	5.415	0.570	0.586	4.784	5.201	0.281	0.319	5.371	5.140
	1.887	1.710	5.037	5.405	0.527	0.571	4.967	4.940	0.296	0.296	5.192	5.348
Average	1.729	1.781	4.954	5.111	0.567	0.596	4.718	4.916	0.285	0.299	5.390	5.267
Std dev	0.081	0.083	0.068	0.386	0.020	0.026	0.269	0.205	0.008	0.014	0.254	0.163
x0-xa (difference)		0.054				0.020						
Test 'consequential instability':		-0.051		-0.158		-0.029		-0.199		-0.014		0.123
		-0.051		-0.158				-0.199				0.123
он		0.380		1.090				-0.199 1.038				1.186
σΗ		0.380		1.090		-0.029 0.125		1.038		0.063		1.186
σH 0,3*σH		0.380		1.090 0.327		-0.029 0.125 0.037		1.038 0.311		0.063 0.019		1.186 0.356
σH 0,3*σH x0-xa<0,3*σH? (consequential instability)		0.380		1.090		-0.029 0.125		1.038		0.063		1.186
σH 0,3*σH		0.380 0.114 NO		1.090 0.327 NO		-0.029 0.125 0.037 NO		1.038 0.311 NO		-0.014 0.063 0.019 NO		1.186 0.356 NO
σH 0,3*σH x0-xa<0,3*σH? (consequential instability) Test significant difference: t		0.380 0.114 NO 1.079		1.090 0.327 NO 0.984		-0.029 0.125 0.037 NO 2.136		1.038 0.311 NO 1.438		-0.014 0.063 0.019 NO 2.114		1.186 0.356 NO 0.995
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test 'significant difference': t t-crit		0.380 0.114 NO 1.079 2.228		1.090 0.327 NO 0.984 2.228		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
σH 0,3*σH x0-xa<0,3*σH? (consequential instability) Test significant difference: t		0.380 0.114 NO 1.079		1.090 0.327 NO 0.984		-0.029 0.125 0.037 NO 2.136		1.038 0.311 NO 1.438		-0.014 0.063 0.019 NO 2.114		1.186 0.356 NO 0.995
σH 0,3*σH x0-xa<0,3*σH? (consequential instability) Test 'significant difference': t t-crit Significant difference		0.380 0.114 NO 1.079 2.228		1.090 0.327 NO 0.984 2.228		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test significant difference: t t-crit Significant difference Biomarker	TBBPA level 1	0.380 0.114 NO 1.079 2.228 NO	TBBPA level 2	1.090 0.327 NO 0.984 2.228 NO		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
σH 0,3*σH x0-xa<0,3*σH? (consequential instability) Test 'significant difference': t t-crit Significant difference	0	0.380 0.114 NO 1.079 2.228 NO	TBBPA level 2	1.090 0.327 NO 0.984 2.228 NO		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test significant difference: t t-crit Significant difference Biomarker		0.380 0.114 NO 1.079 2.228 NO	TBBPA level 2	1.090 0.327 NO 0.984 2.228 NO		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test significant difference: t t-crit Significant difference Biomarker	0	0.380 0.114 NO 1.079 2.228 NO	TBBPA level 2	1.090 0.327 NO 0.984 2.228 NO		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test significant difference: t t-crit Significant difference Biomarker	0 2.539 2.462	0.380 0.114 NO 1.079 2.228 NO 40 3.167 2.450	TBBPA level 2 0 10.193 9.975	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test significant difference: t t-crit Significant difference Biomarker	0 2.539 2.462 2.653	0.380 0.114 NO 1.079 2.228 NO 40 3.167 2.450 2.771	TBBPA level 2 0 10.193 9.975 9.738	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test significant difference: t t-crit Significant difference Biomarker	0 2.539 2.462 2.653 2.637	0.380 0.114 NO 1.079 2.228 NO 40 3.167 2.450 2.771 3.040	TBBPA level 2 0 10.193 9.975 9.738 9.797	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test significant difference: t t-crit Significant difference Biomarker	0 2.539 2.462 2.653 2.637 3.020	0.380 0.114 NO 1.079 2.228 NO 40 3.167 2.450 2.771 3.040 2.360	TBBPA level 2 0 10.193 9.975 9.738 9.797 9.486	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test 'significant difference': t t-crit Significant difference Biomarker fime (days)	0 2.539 2.462 2.653 2.637 3.020 2.398	0.380 0.114 NO 1.079 2.228 NO 40 3.167 2.450 2.771 3.040 2.360 2.727	TBBPA level 2 0 10.193 9.975 9.738 9.797 9.486 9.989	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817 10.120 10.483		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test significant difference': t t-crit Significant difference Biomarker fime (days)	0 2.539 2.462 2.653 2.637 3.020 2.398 2.618	0.380 0.114 NO 1.079 2.228 NO 40 3.167 2.450 2.771 3.040 2.360 2.727 2.752	TBBPA level 2 0 10.193 9.975 9.738 9.797 9.486 9.989 9.863	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817 10.120 10.483 10.397		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test significant difference': t t-crit Significant difference Biomarker fime (days) Average Std dev	0 2.539 2.462 2.653 2.637 3.020 2.398	0.380 0.114 NO 1.079 2.228 NO 40 3.167 2.450 2.771 3.040 2.360 2.727 2.752 0.317	TBBPA level 2 0 10.193 9.975 9.738 9.797 9.486 9.989 9.863 0.245	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817 10.120 10.483 10.397 0.958		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test 'significant difference': t t-crit Significant difference Biomarker fime (days) Average Std dev x0-xa (difference)	0 2.539 2.462 2.653 2.637 3.020 2.398 2.618	0.380 0.114 NO 1.079 2.228 NO 40 3.167 2.450 2.771 3.040 2.360 2.727 2.752	TBBPA level 2 0 10.193 9.975 9.738 9.797 9.486 9.989 9.863 0.245	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817 10.120 10.483 10.397		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test significant difference': t t-crit Significant difference Biomarker fime (days) Average Std dev	0 2.539 2.462 2.653 2.637 3.020 2.398 2.618	0.380 0.114 NO 1.079 2.228 NO 3.167 2.450 2.771 3.040 2.360 2.727 2.752 0.317 -0.134	TBBPA level 2 0 10.193 9.975 9.738 9.797 9.486 9.989 9.863 0.245	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817 10.120 10.483 10.397 0.958		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test 'significant difference': t t-crit Significant difference Biomarker fime (days) Average Std dev x0-xa (difference)	0 2.539 2.462 2.653 2.637 3.020 2.398 2.618	0.380 0.114 NO 1.079 2.228 NO 40 3.167 2.450 2.771 3.040 2.360 2.727 2.752 0.317	TBBPA level 2 0 10.193 9.975 9.738 9.797 9.486 9.989 9.863 0.245	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817 10.120 10.483 10.397 0.958		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test 'significant difference': t t-crit Significant difference Biomarker fime (days) Average Std dev x0-xa (difference) Test'consequential instability':	0 2.539 2.462 2.653 2.637 3.020 2.398 2.618	0.380 0.114 NO 1.079 2.228 NO 3.167 2.450 2.771 3.040 2.360 2.727 2.752 0.317 -0.134	TBBPA level 2 0 10.193 9.975 9.738 9.797 9.486 9.989 9.863 0.245	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817 10.120 10.483 10.397 0.958		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
σΗ 0,3*σΗ x0-xa<0,3*σΗ? (consequential instability) Test significant difference': t t-crit Significant difference Biomarker Biomarker fime (days) Average Std dev x0-xa (difference) Test consequential instability': σΗ 0,3*σΗ	0 2.539 2.462 2.653 2.637 3.020 2.398 2.618	0.380 0.114 NO 1.079 2.228 NO 40 3.167 2.450 2.771 3.040 2.727 2.752 0.317 -0.134	TBBPA level 2 0 10.193 9.975 9.738 9.797 9.486 9.989 9.863 0.245	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817 10.120 10.483 10.393 -0.534 2.170 0.651		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH v0-xa<0,3*oH? (consequential instability) Test significant difference': t t-crit Significant difference Biomarker Biomarker fime (days) Average Std dev v0-xa (difference) Test 'consequential instability': oH 0,3*oH v0-xa<0,3*oH? (consequential instability)	0 2.539 2.462 2.653 2.637 3.020 2.398 2.618	0.380 0.114 NO 1.079 2.228 NO 3.167 2.450 2.771 3.040 2.360 2.727 2.752 2.752 0.576	TBBPA level 2 0 10.193 9.975 9.738 9.797 9.486 9.989 9.863 0.245	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817 10.120 10.483 10.397 0.958 -0.534		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
σΗ 0,3*σΗ x0-xa<0,3*σΗ? (consequential instability) Test significant difference': t t-crit Significant difference Biomarker Biomarker fime (days) Average Std dev x0-xa (difference) Test consequential instability': σΗ 0,3*σΗ	0 2.539 2.462 2.653 2.637 3.020 2.398 2.618	0.380 0.114 NO 1.079 2.228 NO 40 3.167 2.450 2.771 3.040 2.360 2.727 2.752 0.317 -0.134 NO	TBBPA level 2 0 10.193 9.975 9.738 9.797 9.486 9.989 9.863 0.245	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817 10.120 10.483 10.397 9.534 -0.534 NO		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH v0-xa<0,3*oH? (consequential instability) Test significant difference': t t-crit Significant difference Biomarker Biomarker fime (days) Average Std dev x0-xa (difference) Test 'consequential instability': oH 0,3*oH x0-xa<0,3*oH? (consequential instability) Test 'significant difference': t	0 2.539 2.462 2.653 2.637 3.020 2.398 2.618	0.380 0.114 NO 1.079 2.228 NO 40 3.167 2.450 2.771 2.360 2.727 2.752 0.317 -0.134 NO 0.851	TBBPA level 2 0 10.193 9.975 9.738 9.797 9.486 9.989 9.863 0.245	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817 10.120 11.483 10.397 0.958 2.170 0.651 NO		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228
oH 0,3*oH v0-xa<0,3*oH? (consequential instability) Test significant difference': t t-crit Significant difference Biomarker Biomarker fime (days) Average Std dev v0-xa (difference) Test 'consequential instability': oH 0,3*oH v0-xa<0,3*oH? (consequential instability)	0 2.539 2.462 2.653 2.637 3.020 2.398 2.618	0.380 0.114 NO 1.079 2.228 NO 40 3.167 2.450 2.771 3.040 2.360 2.727 2.752 0.317 -0.134 NO	TBBPA level 2 0 10.193 9.975 9.738 9.797 9.486 9.989 9.863 0.245	1.090 0.327 NO 0.984 2.228 NO 40 9.484 12.218 10.256 9.817 10.120 10.483 10.397 9.534 -0.534 NO		-0.029 0.125 0.037 NO 2.136 2.228		1.038 0.311 NO 1.438 2.228		-0.014 0.063 0.019 NO 2.114 2.228		1.186 0.356 NO 0.995 2.228

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 19
BFR in serum Round 3			

Appendix 3: Copy of letter of invitation

HBM4EU: Announcement / invitation to participate in ICI / EQUAS study

Title of ICI/EQUAS: BFR in serum

BFR/Round 3

Dear Colleague,

within the frame of HBM4EU,

Prof. Dr. Jana Hajslova & Dr. Darina Lankova

University of Chemistry and Technology, Prague

Department of Food Analysis and Nutrition

Technicka 3

166 28 Prague 6 Czech Republic announce the 3rd round of IC/IEQUAS for the determination of BFR in serum. The aim of IC/IEQUAS exercises is to provide laboratories with an assessment of their analytical performance and reliability of their data in comparison with other laboratories and/or expert laboratories. This will aid in the quality improvement of analysis in human biomonitoring at each of the laboratories.

Participation is mandatory for laboratories analysing samples in the frame of HBM4EU.

Test samples

The matrix will be serum. The participants will receive:

3 different materials of serum (5 ml each) for determination of BFR in serum

Target biomarkers

Please see registration form for BFR/Round 3 for the biomarkers potentially present in the test samples. We would be pleased if your laboratory could participate with the analysis of as most as possible BFR.

LOQs should allow the analysis of BFR in samples of the general population.

Calendar:

23-05-2019 28-05-2019 08-07-2019 Deadline for reporting the results (projected) Distribution of test samples (projected) Deadline for registration

Registration

For registration please find attached a registration form for BFR in serum. Please send it back Upon registration, the participant will receive a lab-code to be used for submission of results to us by mail in case you want to register

Fee For partners and linked-third parties of HBM4EU, participation is free of charge. Please note that the participant is responsible for custom clearance and associated costs if applicable.

Confidentiality:

All laboratory specific information will be treated confidentially, and will never be disclosed to third parties (government, accreditation bodies) except the HBMAEU QAU, without permission of the laboratory.

Contact information organiser:

University of Chemistry and Technology, Prague Department of Food Analysis and Nutrition Dr. Darina Lankova

Czech Republic

Email of organiser: darina.lankova@vscht.cz Email for registration: VSCHT-hbm4EU@vscht.cz Phone: 00420 22044 4312

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 20
BFR in serum Round 3		_	

Appendix 4: Copy of registration form for participation

Address for delivery of the test samples name of institution

address of the laboratory

The above laboratory will participate in the ICI/EQUAS study **BFR/Round 3**. Iagree with the conditions mentioned in the invitation letter, and that the laboratory will analyse the ICI/EQUAS samples using the same procedure as will be used for analysis of samples in the frame of HBM4EU, and submit results before the indicated deadline.

Name:

Date:

After signing this form, please scan and send the pdf to:

VSCHT-hbm4EU@vscht.cz

University of Chemistry and Technology, Prague Department of Food Analysis and Nutrition Contact information organiser: Dr. Darina Lankova

166 28 Prague 6 Czech Republic

Email: darina.lankova@vscht.cz Phone: 00420 22044 4312

HBM4EU: Registration form for participation in ICI / EQUAS study BFR/Round 3.

for a healthy future science and policy

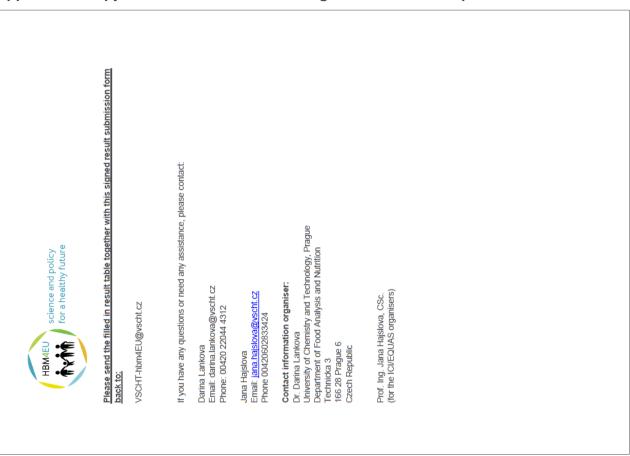
HBM4EU

Title of ICI/EQUAS: BFR in serum

Please choose the BFRs you want to participate with. We would appreciate your registration for as much biomarkers as possible.

	Participation	oation
Parameter	Yes	No
BDE-47		
BDE-153		
BDE-209		
a-HBCD		
y-HBCD		
TBBPA		
Syn-DP		
Anti-DP		
DBDPE		
2,4,6-Tribromophenol		

Participating laboratory: name of institution


address of the laboratory

name of 1st contact person, telephone number and email address

name of 2nd contact person, telephone number and email address

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 21
BFR in serum Round 3			

Appendix 5: Copy of letter/instructions sent together with test samples

HBM4EU: Result submission form ICI/EQUAS study BFR/ Round 3.

for a healthy future science and policy

HBM4EU

ritle of ICI/EQUAS: BFR in serum

Laboratory name & code:

Contact person:

Institute:

Address:

Country:

For each of the analytes from this ICI/EQUAS round:

provide the LOQ

- report NA for not analysed/not included in the scope of the method used - report ND when not detected or detected below LOQ - report a numerical value when found above LOQ, express to three significant figures (e.g. 0.543)

Date:

Signature:

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 22
BFR in serum Round 3	•		

Appendix 6: Copy of acknowledgement of receipt sent together with test samples

If you have any questions or need any assistance, please contact: Contact information organiser:

Dr. Darina Lankova
University of Chemistry and Technology, Prague
Department of Food Analysis and Nutrition
Technicka 3
166 28 Prague 6
Czech Republic science and policy for a healthy future Darina Lankova Email: darina.lankova@vscht.cz Phone: 00420 22044 4312 Prof. Ing. Jana Hajslova, CSc. (for the ICI/EQUAS organisers) Email: jana.hajslova@vscht.cz Phone 00420 602 833 424 £. HBM4EU Jana Hajslova

> Remarks Damage/leakage Code on tube

Please verify that the items listed below have been received and provide the information

Date of receipt (dd-mm-yyyy):

requested below:

Contents of parcel:
- 3 tubes with 5 ml serum

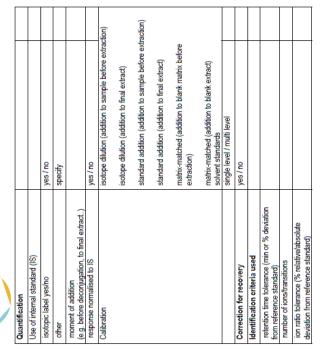
Signature: Name:

Date:

After signing this form, please scan and send the pdf. to: VSCHT-hbm4EU@vscht.cz

science and policy for a healthy future HBM4EU £

HBM4EU: Acknowledgement of receipt form ICI/EQUAS study BFR/Round 3.


Title of ICI/EQUAS: BFR in serum

Laboratory name:

Contact person:

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 23
BFR in serum Round 3			

Appendix 7: Copy of method information form for participation in 3rd ICI/EQUAS

science and policy for a healthy future

£.

HBM4EU

HBM4EU

Further remarks/observations:

Date:

Signature:

g or ml ml/min = Method information form for participation in ICI/EQUAS BFR in serum yes/no yes/no science and policy for a healthy future MS (single quad/triple quad/Q-Orbitrap/Q-TOF) enzymatic (enzyme / pH / temp / time) chemical (reagent / pH / temp / time) column L (mm) x ID (mm); dp (μm) Laboratory name & code LLE (solvent(s) / time / shaking) SPE (material) column L (m) x ID (mm) df (µm) INSTRUMENTAL ANALYSIS SAMPLE PREPARATION amount sample extracted column stationary phase injector (splitless/PTV/...) column stationary phase flow rate / inlet pressure ISO17025 accredited injection volume injection volume mobile phase A Deconjugation pH adjustment LLE (solvent(s)) SPE (material) mobile phase B **Derivatisation** temperature Extraction Detection Cleanup flow rate HPLC

ICI / EQUAS REPORT Round 3	Version: 1	Date of issue: 23-08-2019	Page: 24
BFR in serum Round 3			

Appendix 8: Scope and LOQs (ng/ml) as provided in the method information submitted by the laboratories

Lab code	BDE-47	BDE-153	BDE-209	α-HBCD	γ-HBCD	TBBPA	Syn-DP	Anti-DP	DBDPE	2,4,6-TBP	Total
PT3BFR01	0.005	0.005	0.050	0.005	0.005	0.005	0.020	0.020	0.800	0.010	10
PT3BFR02	0.004	0.004	0.035	NA	NA	0.004	0.010	0.010	0.100	0.049	8
PT3BFR03	0.2	1	NA	NA	NA	NA	NA	NA	NA	NA	2
PT3BFR04	0.00074-0.002963	0.0053-0.12649	0.007975-0.028301	0.002	0.002	0.001	0.002114-0.006311	0.001868-0.005602	2.315	NA	9
PT3BFR05	0.0114	0.0116	0.0515	0.0123	0.0127	NA	0.0114	0.0114	NA	NA	7
PT3BFR06	0.0001	0.0001	0.0001	0.010	0.010	0.005	0.0001	0.0001	NA	0.001	9
PT3BFR07	NA	NA	NA	0.03	0.03	NA	NA	NA	NA	NA	2
PT3BFR08	0.001	0.001	0.15	NA	NA	NA	0.001	0.001	NA	NA	5
PT3BFR09	0.005	0.005	0.1	NA	NA	NA	NA	NA	0.2	NA	4
PT3BFR10	0.01	0.005	0.009	NA	NA	NA	0.005	0.005	0.025	NA	6
PT3BFR11	0.001	0.001	NA	0.25	0.25	NA	0.1	0.1	NA	NA	6
PT3BFR12	0.00152-0.00163	0.00368-0.00392	0.0354-0.0382	0.176-2.24	0.134-0.669	NA	NA	NA	NA	NA	5
PT3BFR13	0.00003-0.00005	0.00003-0.00031	0.001-0.0060	NA	NA	NA	NA	NA	NA	NA	3
PT3BFR14	0.050000	0.05000	NA	NA	NA	NA	NA	NA	NA	NA	2
Total	13	13	10	7	7	4	8	8	5	3	

NA – not analysed

ICI / EQUAS REPORT Round 3	Version: 1	Date of issue: 23-08-2019	Page: 25
BFR in serum Round 3			

Appendix 9: Assigned values and participant's performance

	BDE 47: Level 1			BDE 47: Level 2			BDE 153: Level 1			BDE 153: Level 2			
Z-score based on	expe	ert value (n _{expert labs} =5)	expe	expert value (n _{expert labs} =5)			expert value (n _{expert labs} =5)			expert value (n _{expert labs} =5)		
Number of participants		13			13			13			13		
Number of quantitative results		13	3		13	}		12(+	1)		13	}	
Expert / Consensus value (ng/ml)		0.1	51		0.644			0.18	4	0.549			
Uncertainty of assigned value (ng/ml)		0.0	13		0.098			0.01	9	0.059			
Relative uncertainty (%)		8.0	ô	15.2			10.3			10.7			
Relative FFP-target standard deviation (%)	25		25			25			25				
Study RSDr (%)	24		24		25			33					
	Value	Z-score	Classification	Value	Z-score	Classification	Value	Z-score	Classification	Value	Z-score	Classification	
PT3BFR01	0.144	-0.2	satisfactory	0.590	-0.3	satisfactory	0.215	0.7	satisfactory	0.655	0.8	satisfactory	
PT3BFR02	0.123	-0.7	satisfactory	0.460	-1.1	satisfactory	0.202	0.4	satisfactory	0.547	0.0	satisfactory	
PT3BFR03	0.201	1.3	satisfactory	0.743	0.6	satisfactory	< 1.000	(17.7)	unsatisfactory	1.062	3.7	unsatisfactory	
PT3BFR04	0.097	-1.4	satisfactory	0.395	-1.5	satisfactory	0.106	-1.7	satisfactory	0.324	-1.6	satisfactory	
PT3BFR05	0.132	-0.5	satisfactory	0.518	-0.8	satisfactory	0.193	0.2	satisfactory	0.594	0.3	satisfactory	
PT3BFR06	0.128	-0.6	satisfactory	0.485	-1.0	satisfactory	0.201	0.4	satisfactory	0.594	0.3	satisfactory	
PT3BFR07	NA	Х	X	NA	Х	X	NA	Х	X	NA	Х	Х	
PT3BFR08	0.160	0.2	satisfactory	0.657	0.1	satisfactory	0.215	0.7	satisfactory	0.685	1.0	satisfactory	
PT3BFR09	0.119	-0.8	satisfactory	0.514	-0.8	satisfactory	0.188	0.1	satisfactory	0.636	0.6	satisfactory	
PT3BFR10	0.223	1.9	satisfactory	0.892	1.5	satisfactory	0.304	2.6	questionable	1.097	4.0	unsatisfactory	
PT3BFR11	0.114	-1.0	satisfactory	0.463	-1.1	satisfactory	0.128	-1.2	satisfactory	0.430	-0.9	satisfactory	
PT3BFR12	0.143	-0.2	satisfactory	0.560	-0.5	satisfactory	0.193	0.2	satisfactory	0.599	0.4	satisfactory	
PT3BFR13	0.129	-0.6	satisfactory	0.523	-0.8	satisfactory	0.193	0.2	satisfactory	0.623	0.5	satisfactory	
PT3BFR14	0.167	0.4	satisfactory	0.513	-0.8	satisfactory	0.220	8.0	satisfactory	0.534	-0.1	satisfactory	
		BDE 209:	Level 1		BDE 209:			Syn-DP: I			Syn-DP: I		
Z-score based on			Level 1 n _{expert labs} =4*)		rt value (n _{expert labs} =5)		onsensu		(consensu		
Number of participants		rt value (n _{expert labs} =4*)		rt value (n _{expert labs} =5)		onsensu 8		(consensu 8		
Number of participants Number of quantitative results		rt value (1	n _{expert labs} =4*)		rt value (10	n _{expert labs} =5)		consensu 8 8	s value	(consensu 8 8	s value	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml)		rt value (1 10 10 1.11	n _{expert labs} =4*)		ert value (10 10 1.77	n _{expert labs} =5)		8 8 0.31	s value		8 8 0.76	s value	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml)		ert value (1 10 10 1.19 0.12	n _{expert labs} =4*) 0 0 0 7 21		ert value (10 10 1.77 0.31	n _{expert labs} =5)		0.31 0.04	s value 3 5	(8 8 0.76 0.31	s value	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%)		ert value (i 10 10 1.1! 0.1:	n _{expert labs} = 4*))))))) 7 21		ert value (10 10 1.77 0.31	n _{expert labs} =5) 11 15 8		8 8 0.31 0.04	s value 3 5		8 8 0.76 0.31	64 0	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%)		ert value (i 10 1.19 0.11 10.	1 expert labs = 4*) 1		ert value (10 10 1.77 0.31 17.	n _{expert labs} =5)		8 8 0.31 0.04 14.4	3 5 4		8 8 0.76 0.31 40.4	64 0 6	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%)	ехре	ert value (i 10 1.1 1.1: 0.1: 10. 25	n _{expert labs} =4*) 07 21 1	ехре	ert value (10 10 1.77 0.31 17. 25	n _{expert labs} =5) 71 55 8	C	0.31 0.04 14.4 25	s value 3 5		0.76 0.31 40.4 45	s value	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%)	expe	10 10 1.1! 0.1: 10 25 64 Z-score	n _{expert labs} =4*) 07 21 1 Classification	expe	10 10 10 1.77 0.31 17. 25 57 Z-score	n _{expert labs} =5) 11 15 8 6 Classification	Value	8 8 0.31 0.04 14.4 25 35 Z-score	s value 3 5 4 Classification	Value	8 8 0.76 0.31 40. 25 45 Z-score	s value 4 0 6 Classification	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01	Value	10 10 1.1! 0.1: 10 25 64 Z-score	nexpert labs = 4*) 27 21 1 Classification questionable	Value 1.960	10 10 1.77 0.31 17. 25 57 Z-score	n _{expert labs} =5) 11 15 8 Classification satisfactory	Value 0.295	8 8 0.31 0.04 14.4 25 35 Z-score	s value 3 5 4 Classification satisfactory	Value 0.784	8 8 0.76 0.31 40./ 25 45 Z-score	is value i4 0 6 Classification satisfactory	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02	Value 1.820 1.753	rt value (i 10 1.1! 0.1: 10. 25 64 Z-score 2.1	nexpert labs = 4*) 10 10 10 10 11 11 15 16 Classification questionable satisfactory	Value 1.960 3.177	rt value (10 10 1.77 0.31 17. 25 57 Z-score 0.4 3.2	nexpert labs = 5) 11 15 8 6 Classification satisfactory unsatisfactory	Value 0.295 0.368	8 8 0.31 0.04 14.4 25 35 Z-score -0.2 0.7	3 5 4 Classification satisfactory satisfactory	Value 0.784 1.128	8 8 0.76 0.31 40.1 25 45 Z-score 0.1 1.4	is value i4 0 6 6 i Classification satisfactory satisfactory	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03	Value 1.820 1.753	10 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	nexpert labs = 4*) 10 10 17 11 15 16 Classification questionable satisfactory	Value 1.960 3.177 NA	rt value (10 10 1.77 0.31 17. 25 57 Z-score 0.4 3.2 x	nexpert labs = 5) 11 15 8 Classification satisfactory unsatisfactory X	Value 0.295 0.368 NA	8 8 0.31 0.04 14.4 25 35 Z-score -0.2 0.7	3 5 4 Classification satisfactory satisfactory x	Value 0.784 1.128 NA	8 8 0.76 0.31 40.1 25 45 Z-score 0.1 1.4 x	s value 4 0 6 6 classification satisfactory satisfactory x	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04	Value 1.820 1.753 NA 0.269	10 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.	nexpert labs = 4*) 27 21 1 Classification questionable satisfactory x unsatisfactory	Value 1.960 3.177 NA 0.452	100 107 107 107 107 107 107 107 107 107	nexpert labs = 5) 11 15 8 6 Classification satisfactory unsatisfactory x unsatisfactory	Value 0.295 0.368 NA 0.163	8 8 0.31 0.04 14.4 25 35 Z-score -0.2 0.7 x	3 5 4 Classification satisfactory satisfactory x satisfactory	Value 0.784 1.128 NA 0.367	8 8 0.76 0.31 40.1 25 Z-score 0.1 1.4 x -1.5	s value 4 0 6 Classification satisfactory satisfactory x satisfactory	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04 PT3BFR05	Value 1.820 1.753 NA 0.269 1.060	10.11.10.11.10.11.11.11.11.11.11.11.11.1	nexpert labs = 4*) 77 21 1 Classification questionable satisfactory x unsatisfactory satisfactory	Value 1.960 3.177 NA 0.452 1.650	100 107 107 107 107 107 107 107 107 107	nexpertiabs=5) 11 15 8 6 Classification satisfactory unsatisfactory x unsatisfactory satisfactory	Value 0.295 0.368 NA 0.163 0.313	8 8 0.31 0.04 14.4 25 35 Z-score -0.2 0.7 x -1.9	3 5 4 Classification satisfactory satisfactory x satisfactory satisfactory satisfactory	Value 0.784 1.128 NA 0.367 0.804	8 8 0.76 0.31 40.1 25 Z-score 0.1 1.4 x -1.5 0.2	is value i4 0 6 Classification satisfactory x satisfactory satisfactory satisfactory	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06	Value 1.820 1.753 NA 0.269 1.060 0.853	rt value ((10 11 1.1: 0.1: 10.0.1: 10.0.25 64 Z-score 2.1 1.9 x -3.1 -0.5 -1.1	nexpert labs = 4*) 27 21 1 Classification questionable satisfactory x unsatisfactory satisfactory satisfactory	Value 1.960 3.177 NA 0.452 1.650	100 107 107 107 107 107 107 107 107 107	nexpertibles=5) 11 15 15 18 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Value 0.295 0.368 NA 0.163 0.313 0.324	8 8 0.31 0.04 14.4 25 35 Z-score -0.2 0.7 x -1.9 0.0 0.1	3 5 4 Classification satisfactory satisfactory x satisfactory satisfactory satisfactory satisfactory satisfactory	Value 0.784 1.128 NA 0.367 0.804	0.31 40.0 25 45 Z-score 0.1 1.4 x -1.5 0.2 -0.2	is value 64 0 6 Classification satisfactory satisfactory x satisfactory satisfactory satisfactory satisfactory satisfactory	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06 PT3BFR06	Value 1.820 1.753 NA 0.269 1.060 0.853 NA	rt value ((10 11 10 1.1: 10.1: 10.2: 64 Z-score 2.1 1.9 x -3.1 -0.5 -1.1 x	nexpert labs = 4*) 77 21 1 Classification questionable satisfactory x unsatisfactory satisfactory satisfactory x	Value 1.960 3.177 NA 0.452 1.650 NA	100 100 100 100 100 100 100 100 100 100	nexpertibles = 5) 11 15 8 6 Classification satisfactory unsatisfactory x unsatisfactory satisfactory satisfactory satisfactory	Value 0.295 0.368 NA 0.163 0.313 0.324 NA	8 8 0.31 0.04 14.4 25 35 Z-score -0.2 0.7 x -1.9 0.0 0.1 x	3 5 4 Classification satisfactory satisfactory x satisfactory satisfactory satisfactory satisfactory satisfactory	Value 0.784 1.128 NA 0.367 0.804 0.711	0.31 40.0 25 45 2-score 0.1 1.4 x -1.5 0.2 x	is value i4 0 6 Classification satisfactory x satisfactory satisfactory satisfactory satisfactory satisfactory x satisfactory x	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06 PT3BFR06 PT3BFR07 PT3BFR07	Value 1.820 1.753 NA 0.269 1.060 0.853 NA 1.418	rt value ((10 11 10 1.1: 10.1: 10.2: 64 Z-score 2.1 1.9 x -3.1 -0.5 -1.1 x 0.7	nexpert labs = 4*) 77 21 1 Classification questionable satisfactory x unsatisfactory satisfactory satisfactory x satisfactory x satisfactory	Value 1.960 3.177 NA 0.452 1.650 NA 2.535	rt value (100 100 1.77 0.33 17. 25 57 Z-score 0.4 3.2 x -3.0 -0.3 x 1.7	nexpertibles = 5) 11 15 8 8 6 Classification satisfactory unsatisfactory x unsatisfactory satisfactory satisfactory x satisfactory satisfactory x satisfactory	Value 0.295 0.368 NA 0.163 0.313 0.324 NA 0.373	8 8 0.31 0.04 14.4 25 35 Z-score -0.2 0.7 x -1.9 0.0 0.1 x 0.8	3 5 4 Classification satisfactory satisfactory x satisfactory satisfactory satisfactory satisfactory satisfactory satisfactory satisfactory x satisfactory	Value 0.784 1.128 NA 0.367 0.804 0.711 NA 0.895	0.31 40.0 25 45 2-score 0.1 1.4 x -1.5 0.2 -0.2 x 0.5	s value 64 0 6 6 Classification satisfactory x satisfactory satisfactory satisfactory satisfactory x satisfactory satisfactory satisfactory x satisfactory	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06 PT3BFR06 PT3BFR07 PT3BFR08 PT3BFR08	Value 1.820 1.753 NA 0.269 1.060 0.853 NA 1.418 1.170	10 10 10 10 10 10 10 10	nexpert labs = 4*) 77 21 1 Classification questionable satisfactory x unsatisfactory satisfactory x satisfactory satisfactory x satisfactory satisfactory satisfactory	Value 1.960 3.177 NA 0.452 1.650 NA 2.535 2.260	rt value (100 100 1.77 0.33 17. 25 57 Z-score 0.4 3.2 x -3.0 -0.3 -0.3 x 1.7	nexpertiabs=5) 11 15 8 6 Classification satisfactory unsatisfactory x unsatisfactory satisfactory x satisfactory satisfactory x satisfactory satisfactory x satisfactory	Value 0.295 0.368 NA 0.163 0.313 0.324 NA 0.373 NA	8 8 0.31 0.04 14.4 25 35 Z-score -0.2 0.7 x -1.9 0.0 0.1 x 0.8 x	3 5 4 Classification satisfactory satisfactory x satisfactory satisfactory satisfactory satisfactory x satisfactory x satisfactory x satisfactory	Value 0.784 1.128 NA 0.367 0.804 0.711 NA 0.895 NA	0.31 40.0 25 45 2-score 0.1 1.4 x -1.5 0.2 -0.2 x 0.5 x	s value 4 0 6 Classification satisfactory x satisfactory x satisfactory satisfactory x satisfactory x satisfactory x satisfactory x satisfactory x	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06 PT3BFR07 PT3BFR07 PT3BFR08 PT3BFR08 PT3BFR09 PT3BFR09	Value 1.820 1.753 NA 0.269 1.060 0.853 NA 1.418 1.170 0.224	rt value ((10 11 10 1.1: 10.1: 10.2: 64 Z-score 2.1 1.9 x -3.1 -0.5 -1.1 x 0.7 -0.1 -3.3	newpertlabs=4*) 77 21 1 Classification questionable satisfactory x unsatisfactory satisfactory satisfactory x satisfactory unsatisfactory unsatisfactory unsatisfactory unsatisfactory unsatisfactory unsatisfactory unsatisfactory	Value 1.960 3.177 NA 0.452 1.650 NA 2.535 2.260 0.794	rt value (100 100 1.77 0.31 17. 25 57 Z-score 0.4 3.2 x -3.0 -0.3 -0.3 x 1.7 1.1	nexpertibles = 5) 11 15 8 8 6 Classification satisfactory unsatisfactory x unsatisfactory satisfactory satisfactory x satisfactory satisfactory x satisfactory questionable	Value 0.295 0.368 NA 0.163 0.313 0.324 NA 0.373 NA	8 8 0.31 0.04 14.4 25 35 Z-score -0.2 0.7 x -1.9 0.0 0.1 x 0.8 x 0.3	3 5 4 Classification satisfactory satisfactory x satisfactory satisfactory satisfactory satisfactory x satisfactory x satisfactory x satisfactory x satisfactory	Value 0.784 1.128 NA 0.367 0.804 0.711 NA 0.895 NA 1.151	0.31 40.0 25 45 2-score 0.1 1.4 x -1.5 0.2 -0.2 x 0.5 x 1.5	is value i4 0 6 Classification satisfactory x satisfactory satisfactory satisfactory x satisfactory x satisfactory x satisfactory x satisfactory x satisfactory x satisfactory	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06 PT3BFR07 PT3BFR07 PT3BFR07 PT3BFR08 PT3BFR08 PT3BFR09 PT3BFR10 PT3BFR10	Value 1.820 1.753 NA 0.269 1.060 0.853 NA 1.418 1.170 0.224 NA	10	nexpert labs = 4*) 77 21 1 Classification questionable satisfactory x unsatisfactory satisfactory satisfactory x satisfactory unsatisfactory x satisfactory x satisfactory x satisfactory x satisfactory x satisfactory unsatisfactory	Value 1.960 3.177 NA 0.452 1.650 NA 2.535 2.260 0.794 NA	rt value (100 1.77 0.33 17. 25 57 Z-score 0.4 3.2 x -3.0 -0.3 x 1.7 1.1 -2.2 x	nexpertiabs=5) 11 5 8 6 Classification satisfactory unsatisfactory x unsatisfactory satisfactory satisfactory x satisfactory satisfactory x satisfactory x satisfactory x satisfactory x	Value 0.295 0.368 NA 0.163 0.313 0.324 NA 0.373 NA 0.337	8 8 0.31 0.04 14.4 255 355 Z-score -0.2 0.7 x -1.9 0.0 0.1 x 0.8 x 0.3 -2.7	3 5 4 Classification satisfactory satisfactory satisfactory satisfactory satisfactory satisfactory x satisfactory x satisfactory x satisfactory questionable	Value 0.784 1.128 NA 0.367 0.804 0.711 NA 0.895 NA 1.151 0.184	0.31 40.0 25 45 2-score 0.1 1.4 x -1.5 0.2 -0.2 x 0.5 x 1.5 -2.2	is value id 0 6 Classification satisfactory satisfactory x satisfactory satisfactory x satisfactory x satisfactory x satisfactory x satisfactory questionable	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06 PT3BFR07 PT3BFR07 PT3BFR07 PT3BFR08 PT3BFR08 PT3BFR09 PT3BFR10 PT3BFR11 PT3BFR11	Value 1.820 1.753 NA 0.269 1.060 0.853 NA 1.418 1.170 0.224 NA 0.978	10	newpert labs = 4*) 77 21 1 Classification questionable satisfactory x unsatisfactory satisfactory x satisfactory unsatisfactory x satisfactory x satisfactory x satisfactory x satisfactory x satisfactory satisfactory unsatisfactory x satisfactory	Value 1.960 3.177 NA 0.452 1.650 NA 2.535 2.260 0.794 NA 1.740	rt value (100 1.77 0.33 17. 25 57 Z-score 0.4 3.2 x -3.0 -0.3 x 1.7 1.1 -2.2 x -0.1	nexpertiabs = 5) 11 15 8 Classification satisfactory unsatisfactory x unsatisfactory satisfactory x satisfactory satisfactory satisfactory satisfactory satisfactory	Value 0.295 0.368 NA 0.163 0.313 0.324 NA 0.373 NA 0.337 0.100	8 8 0.31 0.04 14.4 255 355 Z-score -0.2 0.7 x -1.9 0.0 0.1 x 0.8 x 0.3 -2.7 x	3 5 4 Classification satisfactory satisfactory satisfactory satisfactory satisfactory satisfactory x satisfactory x satisfactory x satisfactory x satisfactory x satisfactory x satisfactory	Value 0.784 1.128 NA 0.367 0.804 0.711 NA 0.895 NA 1.151 0.184	0.31 40.0 25 45 2-score 0.1 1.4 x -1.5 0.2 -0.2 x 0.5 x 1.5 -2.2 x	is value id 4 0 6 Classification satisfactory satisfactory x satisfactory satisfactory x satisfactory	
Number of participants Number of quantitative results Expert / Consensus value (ng/ml) Uncertainty of assigned value (ng/ml) Relative uncertainty (%) Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06 PT3BFR07 PT3BFR07 PT3BFR08 PT3BFR08 PT3BFR09 PT3BFR09 PT3BFR10 PT3BFR11	Value 1.820 1.753 NA 0.269 1.060 0.853 NA 1.418 1.170 0.224 NA	10	nexpert labs = 4*) 77 21 1 Classification questionable satisfactory x unsatisfactory satisfactory satisfactory x satisfactory unsatisfactory x satisfactory x satisfactory x satisfactory x satisfactory x satisfactory unsatisfactory	Value 1.960 3.177 NA 0.452 1.650 NA 2.535 2.260 0.794 NA	rt value (100 1.77 0.33 17. 25 57 Z-score 0.4 3.2 x -3.0 -0.3 x 1.7 1.1 -2.2 x	nexpertiabs=5) 11 5 8 6 Classification satisfactory unsatisfactory x unsatisfactory satisfactory satisfactory x satisfactory satisfactory x satisfactory x satisfactory x satisfactory x	Value 0.295 0.368 NA 0.163 0.313 0.324 NA 0.373 NA 0.337	8 8 0.31 0.04 14.4 255 355 Z-score -0.2 0.7 x -1.9 0.0 0.1 x 0.8 x 0.3 -2.7	3 5 4 Classification satisfactory satisfactory satisfactory satisfactory satisfactory satisfactory x satisfactory x satisfactory x satisfactory questionable	Value 0.784 1.128 NA 0.367 0.804 0.711 NA 0.895 NA 1.151 0.184	0.31 40.0 25 45 2-score 0.1 1.4 x -1.5 0.2 -0.2 x 0.5 x 1.5 -2.2	is value id 4 0 6 Classification satisfactory satisfactory x satisfactory satisfactory satisfactory x satisfactory x satisfactory x satisfactory questionable	

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 26
BFR in serum Round 3			

Appendix 9: Assigned values and participant's performance (continued)

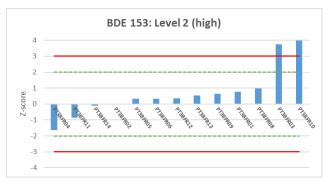
		Anti-DP:	Level 1		α-HBCD:	Level 1	α-HBCD: Level 2			
Z-score based on		consensi	us value	Ĭ	consensu	ıs value	consensus value			
Number of participants		8			7		7			
Number of quantitative results		8			7			7		
Expert / Consensus value (ng/ml)		0.13	34		0.58	33	4.887			
Uncertainty of assigned value (ng/ml)		0.0	32		0.05	51	0.416			
Relative uncertainty (%)		23.	.9		8.7	7	8.5			
Relative FFP-target standard deviation (%)		25	5	25			25			
Study RSDr (%)		35	5	31			18			
	Value	Z-score	Classification	Value	Z-score	Classification	Value	Z-score	Classification	
PT3BFR01	0.133	-0.02	satisfactory	0.500	-0.54	satisfactory	4.525	-0.27	satisfactory	
PT3BFR02	0.136	0.06	satisfactory	NA	Х	х	NA	Х	Х	
PT3BFR03	NA	Х	Х	NA	Х	х	NA	Х	Х	
PT3BFR04	0.087	-1.31	satisfactory	0.490	-0.60	satisfactory	4.298	-0.45	satisfactory	
PT3BFR05	0.138	0.12	satisfactory	0.532	-0.33	satisfactory	4.610	-0.21	satisfactory	
PT3BFR06	0.156	0.62	satisfactory	0.470	-0.73	satisfactory	3.450	-1.11	satisfactory	
PT3BFR07	NA	Х	Х	0.639	0.36	satisfactory	5.740	0.67	satisfactory	
PT3BFR08	0.254	3.36	unsatisfactory	NA	Х	Х	NA	Х	Х	
PT3BFR09	NA	х	Х	NA	Х	Х	NA	Х	Х	
PT3BFR10	0.152	0.51	satisfactory	NA	Х	Х	NA	Х	Х	
PT3BFR11	0.100	-0.94	satisfactory	0.710	0.82	satisfactory	5.640	0.59	satisfactory	
PT3BFR12	NA	Х	х	1.020	2.83	questionable	5.840	0.75	satisfactory	
PT3BFR13	NA	Х	х	NA	Х	х	NA	Х	х	
PT3BFR14	NA	Х	х	NA	Х	х	NA	Х	х	
		γ-HBCD:	Level 1		γ-HBCD:	Level 2				
Z-score based on		consensi	us value	consensus value						
Number of participants		7		7						
Number of quantitative results		7	'		7					
Expert / Consensus value (ng/ml)		0.3	21	5.908						
Uncertainty of assigned value (ng/ml)		0.013			3.30	00				
Relative uncertainty (%)	4.0				0.26					
• • •						62				
Relative FFP-target standard deviation (%)			0		0.26	62 1				
• • •		4.	0		0.26 4.4 25 8	62 1 5				
Relative FFP-target standard deviation (%)	Value	4. 25 61	0	Value	0.26 4.4 25 8	62 1				
Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01	Value 0.296	4. 25 61	0 5 1	Value 5.777	0.26 4.4 25 8	62 1 5				
Relative FFP-target standard deviation (%) Study RSDr (%)		4. 25 61 Z-score	0 5 1 Classification		0.26 4.4 25 8 Z-score	62 1 5 Classification				
Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01	0.296	4. 25 61 Z-score -0.32	0 5 1 Classification satisfactory	5.777	0.26 4.4 25 8 Z-score -0.09	Classification				
Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02	0.296 NA	4.1 25 61 Z-score -0.32 x	0 5 1 Classification satisfactory x	5.777 NA	0.26 4.4 25 8 Z-score -0.09	Classification satisfactory				
Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04 PT3BFR05	0.296 NA NA 0.297 0.317	4. 25 61 Z-score -0.32 X	Classification satisfactory x x satisfactory satisfactory	5.777 NA NA 6.150 5.800	0.26 4.4 25 8 Z-score -0.09 X	Classification satisfactory x x satisfactory satisfactory				
Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04	0.296 NA NA 0.297	4. 25 61 Z-score -0.32 X X -0.31	Classification satisfactory x x satisfactory	5.777 NA NA 6.150	0.26 4.4 25 8 Z-score -0.09 x x	Classification satisfactory x x satisfactory				
Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04 PT3BFR05	0.296 NA NA 0.297 0.317	4. 25 61 Z-score -0.32	Classification satisfactory x x satisfactory satisfactory	5.777 NA NA 6.150 5.800	0.26 4.4 25 8 Z-score -0.09 x x 0.16 -0.07	Classification satisfactory x x satisfactory satisfactory				
Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06 PT3BFR06 PT3BFR07 PT3BFR08	0.296 NA NA 0.297 0.317 0.310	4.1 25 61 Z-score -0.32 x x -0.31 -0.05 -0.14	Classification satisfactory x x satisfactory satisfactory satisfactory satisfactory	5.777 NA NA 6.150 5.800 5.180	0.26 4.4 25 8 Z-score -0.09 X X 0.16 -0.07 -0.49	Classification satisfactory x x satisfactory satisfactory satisfactory				
Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06 PT3BFR06	0.296 NA NA 0.297 0.317 0.310 0.349	4.J 25 61 2-score -0.32 x x -0.31 -0.05 -0.14 0.34	Classification satisfactory x x satisfactory satisfactory satisfactory satisfactory satisfactory	5.777 NA NA 6.150 5.800 5.180 6.770	0.26 4.4 25 8 Z-score -0.09 x x 0.16 -0.07 -0.49	Classification satisfactory x x satisfactory satisfactory satisfactory satisfactory satisfactory				
Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06 PT3BFR06 PT3BFR07 PT3BFR08	0.296 NA NA 0.297 0.317 0.310 0.349 NA	4.5 25 61 2-score -0.32 x x -0.31 -0.05 -0.14 0.34 x	Classification satisfactory X X satisfactory satisfactory satisfactory satisfactory satisfactory x	5.777 NA NA 6.150 5.800 5.180 6.770 NA	0.26 4.4 25 8 Z-score -0.09 x x 0.16 -0.07 -0.49 0.58 x	Classification satisfactory x x satisfactory satisfactory satisfactory satisfactory satisfactory x				
Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06 PT3BFR07 PT3BFR07 PT3BFR08 PT3BFR08	0.296 NA NA 0.297 0.317 0.310 0.349 NA	4.9 25 61 2-score -0.32 x x -0.31 -0.05 -0.14 0.34 x x	Classification satisfactory X x satisfactory satisfactory satisfactory satisfactory x x x x x x x x x x x x x x x x x x x	5.777 NA NA 6.150 5.800 5.180 6.770 NA	0.26 4.4 25 8 Z-score -0.09 x x 0.16 -0.07 -0.49 0.58 x	Classification satisfactory X x satisfactory satisfactory satisfactory satisfactory satisfactory x x				
Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06 PT3BFR06 PT3BFR07 PT3BFR08 PT3BFR09 PT3BFR10	0.296 NA NA 0.297 0.317 0.310 0.349 NA NA	4.9 25 61 2-score -0.32 x x -0.31 -0.05 -0.14 0.34 x x x	Classification satisfactory X x satisfactory satisfactory satisfactory satisfactory x x x x x x x x x x x x	5.777 NA NA 6.150 5.800 5.180 6.770 NA NA	0.26 4.4 25 8 Z-score -0.09 x x 0.16 -0.07 -0.49 0.58 x x	Classification satisfactory x x satisfactory satisfactory satisfactory satisfactory satisfactory x x x x				
Relative FFP-target standard deviation (%) Study RSDr (%) PT3BFR01 PT3BFR02 PT3BFR03 PT3BFR04 PT3BFR05 PT3BFR06 PT3BFR06 PT3BFR07 PT3BFR07 PT3BFR08 PT3BFR09 PT3BFR10 PT3BFR11	0.296 NA NA 0.297 0.317 0.310 0.349 NA NA NA 0.430	4.4 25 61 Z-score -0.32 x x -0.31 -0.05 -0.14 0.34 x x x	Classification satisfactory X X satisfactory satisfactory satisfactory satisfactory x X X satisfactory satisfactory satisfactory x X X x x satisfactory	5.777 NA NA 6.150 5.800 5.180 6.770 NA NA NA	0.26 4.4. 25 8 Z-score -0.09 x x 0.16 -0.07 -0.49 0.58 x x x 0.10	Classification satisfactory X X satisfactory satisfactory satisfactory satisfactory x X X satisfactory satisfactory satisfactory x x x x x satisfactory				

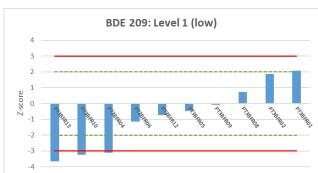
Legend to tables in Appendix 9:

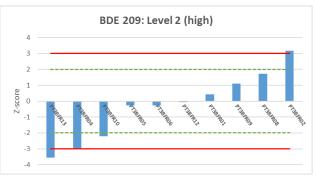
Z-score based on expert value = calculation of assigned value was based on the results obtained from expert laboratories.

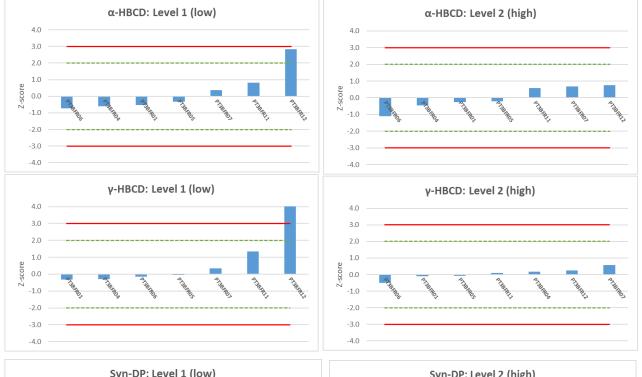
Z-score based on consensus value = no expert value was calculated because the number of valid results from expert laboratories was below 3. Instead, the consensus value based on the combined results of participants and expert laboratories was used as assigned value.

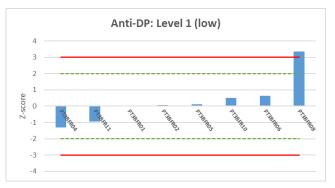
Z-score between brackets (x.x): laboratory reported result as '<LOQ-value'. A proxy-Z-score was calculated using the LOQ as result (see paragraph 5.6).


ICI / EQUAS REPORT Round 3	Version: 1	Date of issue: 23-08-2019	Page: 27
BFR in serum Round 3			


Appendix 10: Graphical representation of the Z-scores






ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 28
BFR in serum Round 3			

Appendix 10: Graphical representation of the Z-scores (continued)

ICI / EQUAS REPORT Round 3	Version: 1	Date: 23-08-2019	Page: 29
BFR in serum Round 3			

Appendix 11: Reported results for which no assigned value and Z-scores were calculated

	TBBPA: Level 1		TBBPA: Level 2			DBDPE: Level 1			DBDPE: Level 2			
Z-score based on		х		X		х			х			
Number of participants		4			4		5			5		
Number of quantitative results		4		4			1(+4)			2(+3)		
Expert / Consensus value (ng/ml)		NO	;	NC			NC			NC		
Uncertainty of assigned value (ng/ml)		NO	3	NC			NC			NC		
Relative uncertainty (%)		NC		NC			NC			NC		
Relative FFP-target standard deviation (%)	NC		NC			NC			NC			
Study RSDr (%)	NC		NC		NC			NC				
	Value	Z-score	Classification	Value	Z-score	Classification	Value	Z-score	Classification	Value	Z-score	Classification
PT3BFR01	2.278	х	х	7.519	х	Х	< 0.800	х	x	< 0.800	Х	х
PT3BFR02	1.737	Х	х	14.102	Х	х	< 0.100	Х	х	0.531	Х	х
PT3BFR03	NA	Х	х	NA	Х	х	NA	Х	х	NA	Х	х
PT3BFR04	0.787	Х	х	10.427	Х	х	< 2.315	Х	х	< 2.315	Х	х
PT3BFR05	NA	Х	х	NA	Х	х	NA	Х	х	NA	Х	х
PT3BFR06	2.900	Х	Х	9.870	Х	Х	NA	Х	Х	NA	Х	Х
PT3BFR07	NA	Х	Х	NA	х	Х	NA	Х	Х	NA	Х	Х
PT3BFR08	NA	Х	Х	NA	Х	Х	NA	Х	Х	NA	Х	Х
PT3BFR09	NA	Х	Х	NA	х	Х	< 0.200	Х	Х	< 0.200	х	Х
PT3BFR10	NA	Х	Х	NA	х	Х	0.071	Х	Х	0.418	х	Х
PT3BFR11	NA	Х	х	NA	Х	х	NA	Х	х	NA	Х	х
PT3BFR12	NA	Х	х	NA	Х	х	NA	Х	х	NA	Х	х
PT3BFR13	NA	х	х	NA	х	х	NA	х	Х	NA	х	х
PT3BFR14	NA	х	х	NA	х	х	NA	х	Х	NA	х	х
		2,4,6-TBP	: Level 1	:	2,4,6-TBP	: Level 2	Anti-DP: Level 2					
Z-score based on		х			х		consensus value					
Number of participants		3			3			8				
Number of quantitative results		3			3			8				
Expert / Consensus value (ng/ml)		N	;		N	3	0.769					
Uncertainty of assigned value (ng/ml)		N	;	NC			0.389 (unfit)					
Relative uncertainty (%)		N	;		N	3	50.6					
Relative FFP-target standard deviation (%)		N	;		N	3	25					
Study RSDr (%)		N			N			44				
	Value	Z-score	Classification	Value	Z-score	Classification	Value	Z-score	Classification			
PT3BFR01	2.128	Х	Х	5.795	Х	Х	0.830	Х	Х			
PT3BFR02	0.73	х	Х	6.41	х	Х	1.051	х	Х			
PT3BFR03	NA	х	х	NA	х	Х	NA	х	x			
PT3BFR04	NA	х	Х	NA	х	Х	0.402	х	Х			
PT3BFR05	NA	Х	х	NA	Х	х	0.779	Х	х			
PT3BFR06	1.610	Х	Х	4.730	Х	Х	0.747	Х	Х			
PT3BFR07	NA	Х	Х	NA	х	Х	NA	х	Х			
PT3BFR08	NA	Х	Х	NA	х	Х	1.216	х	Х			
PT3BFR09	NA	Х	Х	NA	х	Х	NA	х	Х			
PT3BFR10	NA	х	Х	NA	х	Х	1.159	х	Х			
PT3BFR11	NA	х	Х	NA	х	Х	0.213	х	Х			
PT3BFR12	NA	х	Х	NA	х	Х	NA	х	Х			
PT3BFR13	NA	х	Х	NA	х	Х	NA	х	Х			
PT3BFR14	NA	х	Х	NA	х	Х	NA	х	Х			

Legend to the table in Appendix 11

Z-score based on x = no assigned value was calculated because number of valid results from expert laboratories was below 3, and no meaningful robust mean (consensus value) and study RSD_R could be calculated because the number of values from the participants was below 7.