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LIFE EXPECTANCY AND INCOME FOR SELECTED
COUNTRIES AND TIME PERIODS
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Functional dentition (21+ natural teeth): England
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» Substantial improvement - In two decades half of the oldest
population may be able to rely on natural teeth alone

Steele JG, Treasure ET, O’Sullivan |, Morris J, Murray JJ. BDJ 2012; 213: 523-527.
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How can society affect our health? &

Dahlgren and Whitehead “rainbow”

Source: Dahigren G and Whitehead M, Health Inequaiities, London HMSO 1998
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The importance of data structure

“Standard” models not always appropriate
(D Why do we need additional techniques?
5 — Often data is hierarchically structured

— Real data tend to violate the assumptions of independence

Any examples?
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What are hierarchical data? Examples of natural clustering/grouping

Many kinds of data, including observational data collected in human and People in households in areas in countries
biological sciences, have a hierarchical or clustered structure:

— Children with the same parents tend to be more alike in their physical and mental Pup||s within classes within schools
characteristics than individuals chosen at random from the population at large.

— Individuals may be nested within geographical areas or institutions such as schools
or employers.

Patients within wards within hospitals

— Multilevel data structures also arise in longitudinal studies where an individual’s
responses over time are correlated with each other.

Measurements within people within general practices
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Hierarchical / clustered data ) )
) ) ) Hierarchical structure
* Hierarchical data:

- Data clustered / grouped in space: different individuals interviewed in the
same area (e.g. different pupils within the same school)

- Data clustered / grouped in time: same individuals are measured repeatedly Puplls can be classified in schools in areas
over time (e.g. the same measures of cognitive function gathered at 2-year
intervals)

A2 A3 Level 3
* Observations from hierarchical data structures are correlated as

they come from different units that belong to the same group
(pupils in classes; persons with repeated measures). These are School
non-independencies in hierarchical data. This is not taken into
account by standard analytical techniques.
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Proportion of households who are overcrowded

Hierarchical structure Housing éﬁ.,"_u,:';
b

| countrva
|
T st
7] 2w s
P—

7

[ "",“,‘ ] [ e

Time

serial measurement occasions (level 1: i)
clustered within individuals (level 2: j)
clustered within area (level 3: k)
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The independence assumption

The independence assumption
B: Structures in the population

A: Data collection
Survey data rarely come from a Simple Random Sample (SRS)
Even if we have collected data in an unclustered way there is still

Surveys often have multi-stage designs ‘natural’ clustering in the population, as we have already remarked.

We want to take a principled approach - build a model that

— Cost advantages.
represents the population from which the data was taken.

— Often necessary when there is no suitable frame for households (or
individuals)
Result: clustered data Therefore the impact of clustering should be taken into
account and may itself be of substantive interest.

— i.e. the data collection process generates observations that are not

independent e.g. clustered by geography / time / household, etc.
24
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The independence assumption Example: The European Social Survey
C: Dangers
The independence assumption is unrealistic « Cross-sectional, biennial study of European countries
— for example we expect positive correlation between exam results of (2002_2012)

pupils from the same school

. . . O Freely available online Www.europeansocialsurvey.org
Ignoring correlation wrongly estimates standard errors

— because we assume an overly simplistic model structure » Wide range of topics (core and rotating modules)
leading to an overstatement (sometimes understatement) of

statistical significance. « Example here comes from the 2010 wave (27

countries)

Consequently we might believe our conclusions to be statistically
significant when in fact they are not, or vice versa.

. Random intercept: parallel slopes
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We can extend the model by allowing the gradient / Predicted happiness by deprivation score
slope as well as the intercept to vary with cluster

j=1
Yii

=2

Predicted Happy

X <

[IND] MaPerial deprivation (ir}dex)

Random Intercept: heterogeneity = trajectories with intercept above or below average (bg)
Random Slope: heterogeneity = trajectories with slope above or below average (b,)

happy_bycountry happy_av
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Predicted Happy by country

Unemployed: Diamonds, Employed: Triangles
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Countries ranked by unemployed-employed difference:
Larger differences on left.

Predicted Happy score
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Longitudinal data - growth curve models

* We may be interested in overall trajectories of
change in observations at time points labelled i for
individuals labelled j

* We can fit random effects models to longitudinal
data —growth curve models

» Growth curve models fit different intercepts and/or
slopes for each individual allowing for variation
between and within individuals

+ Advantages:

— Account for dependent observations
— Possible to estimate individual trajectories 33

Example

Data from Whitehall Il study
» Over 10,000 participants at start of study
* First wave of data collection in 1985
* Participants aged 35-55 when recruited
* Repeated data collection
» Outcome of interest: weight

Data collected in waves 1,3,5,7,9,11

Data from 3 random participants
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Non-linear trajectories

Quadratic growth Exponential growth
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Summary

» Multilevel models essential in situation when
— Non-randomly selected data
— Hierarchical structure of data
— Contextual variables
— Repeated measures over the time

» Methods to deal with such data different from
“standard” regression methods

» Random data — very rare in real situations — be
careful when evaluating existing evidence




