

science and policy for a healthy future

Environmental burden of disease of cadmium (Cd) and HBM indicators

Cd: Jurgen Buekers & Greet Schoeters (VITO), Eva Ougier& Christophe Rouselle (ANSES), Ricardo Assunção & Carla Martins (INSA), with support of JSI

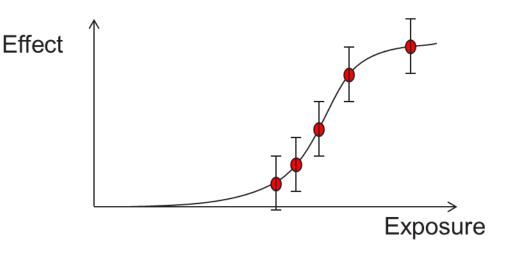
Indicators: **Jurgen Buekers** & Jos Bessems (VITO), Joana Lobo Vicente & Xenia Trier (EEA), Madlen David & Janek Jubelt (UBA)

3rd HBM4EU Training School 2019

Large part of burden of Disease (BoD) and related costs attributed to environmental factors (among them chemicals)

- Prüss-Ustün et al. (2017): 22% of DALYs (environmental risks)
- Grandjean and Bellanger (2017): global costs chemical exposure +/- 10% of Global Domestic Product
- Based on limited information exposure and exposure-response functions
- Production volume of synthetic chemicals is still increasing

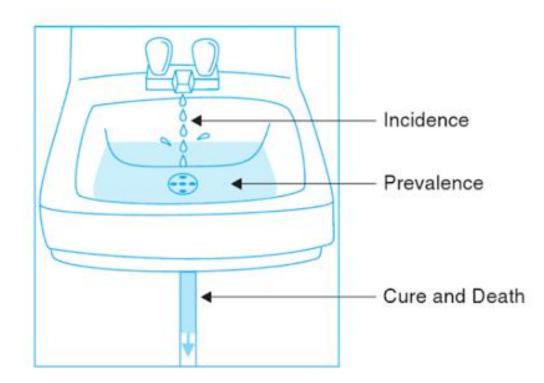
- Environmental burden of disease for exposure to cadmium


 Environment and health indicators within HBM4EU

Risk assessment

- Comparison of exposure with HBM guidance value

Environmental burden of disease (EBoD)


- Epidemiological exposure-response curve
- How many people have certain exposure
- How many people get a certain disease due to exposure

Some definitions

5

Incidence/prevalence

Relationship among incidence, prevalence, mortality and cure.

Odds ratio (OR)

Case control studies

It quantifies the association between an exposure and a health outcome

	Disease (case) 🗆	No disease (controls)	
Exposed	а	b	\searrow
Non-exposed	С	d	V

Odds for disease when exposed: a/b Odds for disease when non-exposed: c/d Odds ratio: (a/b) / (c/d) = ad/bc OR of 1 (no influence of exposure)

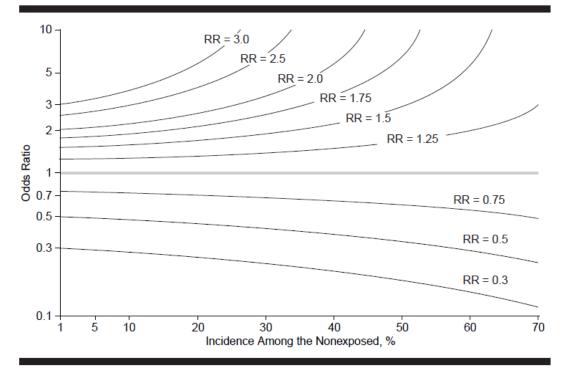
Relative risk (risk ratio)

Relative risk= Compare risk of health event between 2 groups

Risk of disease (incidence proportion, attack rate) in group of primary interest

Risk of disease (incidence proportion, attack rate)

in comparis	son group			
		Population	Disease	No disease
	Exposed	N ₁	a	b
	Not- exposed	N _o	C	d


Risk for disease when exposed: a/N_1 Risk for disease when not exposed: c/N_0 Risk ratio: $(a/N_1) / (c/N_0) = a N_0/c N_1 = a (c+d) / c (a+b)$ It approaches the OR when the disease is rare Risk ratio: $a (c+d) / c (a+b) = a (p+d) / c (p+b) \approx ad/bc$

Relationship OR and RR

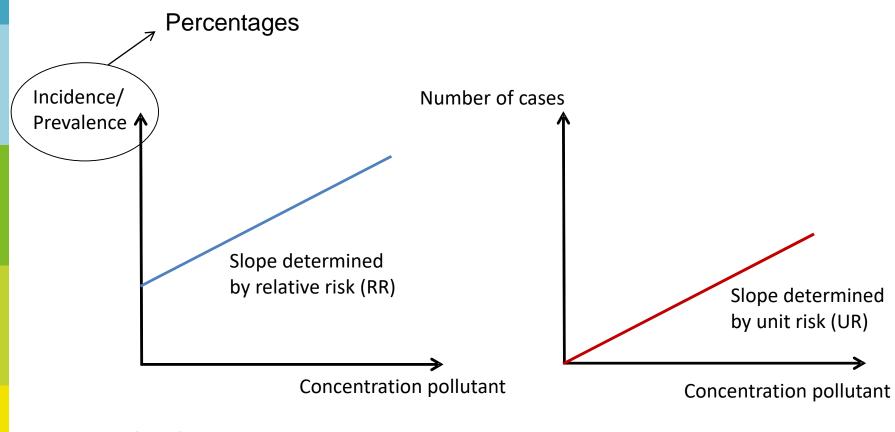
What's the relative risk? (Zhang and Yu, 1998)

$$RR = \frac{OR}{(1 - P_0) + (P_0 \times OR)} = \frac{OR}{(1 - I_0) + (I_0 \times OR)}$$

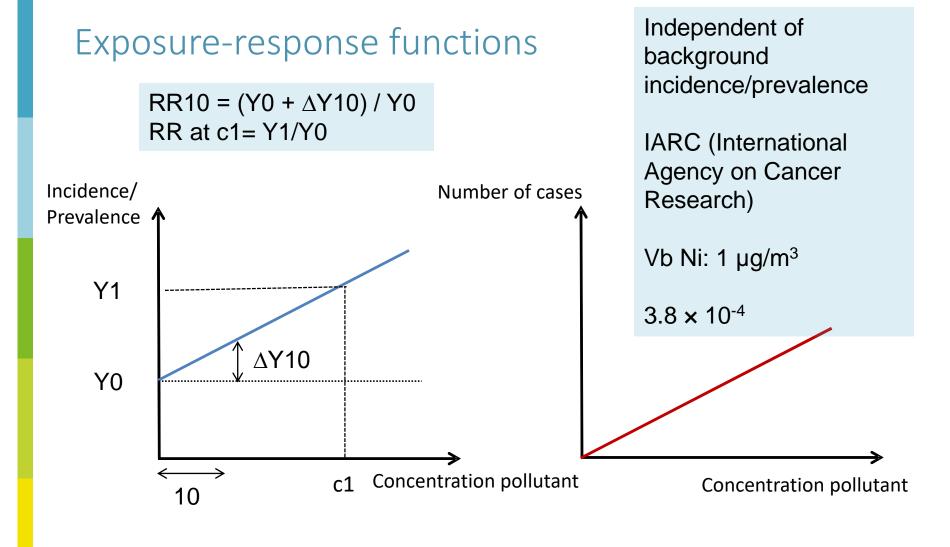
P₀ or I₀: incidence in the nonexposed

The relationship between risk ratio (RR) and odds ratio by incidence of the outcome.

Unit risk

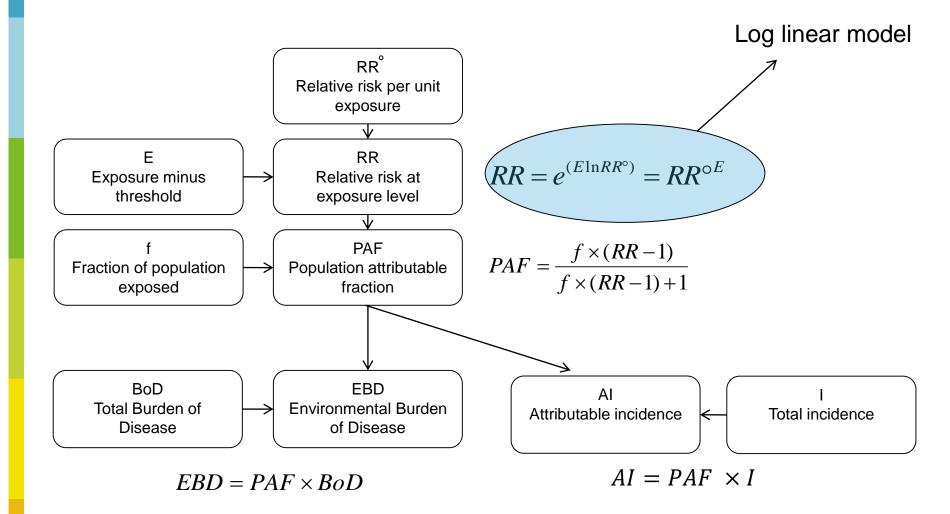

Extra cancer cases IARC (International Agency on Cancer Research) e.g. Ni in air 3.8×10^{-4} and lungcancer For lifetime exposure to $1 \ \mu g/m^3$

Lifetime exposed to $1 \ \mu g/m^3$: $\frac{3.8}{10000}$


Independent of the background incidence

Exposure-response curves

Exposure-response functions



(Log) linear model

(Log) linear model

Population attributable fraction

Hänninen et al. 2011: European Perspectives on Environmental Burden of Disease Estimates for Nine Stressors in Six European Countries

14

Background info!

RR per unit exposure and RR at exposure

Epidemiomogical exposure-response functions often log-linear

Y = B exp (β C) with Y incidence, B background incidence and C concentration

 $RR = Y / B = exp (\beta C)$

 $\beta = \ln (RR) / C \text{ or } \beta$ expresses the change in incidence due to a change in unit concentration of the pollutant

 $\beta = \ln (RR) / C = \ln (RR^{\circ})$

 $\ln (RR) = C \times \ln (RR^{\circ})$

 $RR = exp (C x ln (RR^{\circ}))$

```
RR = exp (ln RR^{\circ C})
```

 $RR = RR^{\circ C}$

Background info!

Population attributable fraction (PAF)

 $PAF = \frac{I_{total} - I_0}{I_{total}}$ with I₀ incidence in the non-exposed I_{total} can also be written as a mixture of exposed and non-exposed I_{total} = f I₁ + (1-f) I₀ with f the fraction of persons exposed

Therefore

$$\mathsf{PAF} = \frac{f I_1 + (1-f) I_0 - I_0}{f I_1 + (1-f) I_0} = \frac{f I_1 + I_0 - f I_0 - I_0}{f I_1 + I_0 - f I_0} = \frac{f I_1 - f I_0}{f I_1 + I_0 - f I_0}$$

$$\mathsf{PAF} = \frac{f(I_1 - I_0)}{f(I_1 - I_0) + I_0} = \frac{f\left(\frac{I_1}{I_0} - \frac{I_0}{I_0}\right)}{f\left(\frac{I_1}{I_0} - \frac{I_0}{I_0}\right) + \frac{I_0}{I_0}} and RR = \frac{I_1}{I_0}$$

 $\mathsf{PAF} = \frac{f(RR-1)}{f(RR-1)+1}$

Uncertainties

Knol, A., 2010. *Health and the Environment: assessing the impacts, addressing the uncertainties,* Thesis Utrecht University, the Netherlands.

- 1. <u>Context</u> uncertainty e.g. selected endpoints
- 2. <u>Model structure uncertainty e.g. threshold?</u>
- 3. <u>Parameter & input data</u> uncertainty *vb. data,* Monte Carlo analyse

Cadmium (Cd)

Toxic, carcinogenic (IARC), SVHC (ECHA) No biological function in humans Naturally abundant, widely distributed Industrial, agricultural activities (fertilizer) Soil -> crop -> human Transfer factor larger than lead, mercury Cigarette smoke Food: algae formulations, offal, cocoa, crustaceans, fungi, seaweeds Safety limits: EC No. 1881/2006: 0.05 mg/kg (some meat products) t

Safety limits: EC No. 1881/2006: 0.05 mg/kg (some meat products) to 1 mg/kg (kidney from some animals, bivalve molluscs)

Safety limits for soils for food production and drinking water

19

EBoD (elderly)

Exposure

RR, OR

Incidence/prevalence

Osteoporosis hip or spine elderly women

- OR: Engström et al. (2011,2012)
- All women

- OR per unit exposure: 1.43 (1.15-1.78) per 0.42 μg Cd/g crea

µg Cd/g crea	OR (95%CI) prevalence osteoporosis
<0.5	1
0.5-0.75	1.61 (1.20-2.16)
≥0.75	1.95 (1.30-2.93)

- No osteoporosis below 0.5 µg/g crea (uncertainty)

->50y

- Low Cd-exposure

ENNS (France, 60-74y, n=421) AMBIENT_ES (Spain, 50-65y, n=119)

Exposure and % > 0.5 μ g Cd/g crea

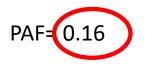
				U-Cd	concer	ntratio	ns (µg	/g crea	a)		% >	% > 0.5 -	% ≥
Country	Age (years)	Ν	GM	95% CI GM	P10	P25	P50	P75	P90	P95	0.5 μg/g crea	0.75 µg/g crea	0.75 µg/g erea
BIOAMBIENT.ES (Spain)	50-65	119	0.42	0.34 - 0.52	-	0.29	0.46	0.69	1.27	1.82	42.32%	16.35%	25.97%
ENNS (France)	60-74	421	0.43	0.40 - 0.46	0.20	0.29	0.42	0.65	0.99	1.15	40.08%	22.38%	17.69%

Prevalence of osteoporosis 30% (Spain) – similar other EU countries

RR?

µg Cd/g crea	OR (95%CI)	RP (95%CI)	
<0.5	1	1	$RR = \frac{OR}{(1 + 1)^2}$
0.5-0.75	1.61 (1.20-2.16)	1.36 (1.13-1.60)	$KK = \frac{1}{(1-I_0) + (I_0 \times OR)}$
≥0.75	1.95 (1.30-2.93)	1.52 (1.19-1.86)	
			21

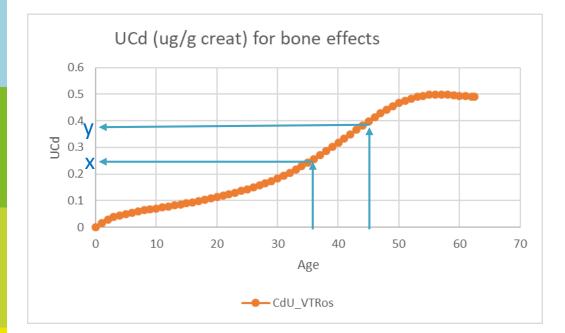
Multilevel exposure


Spain

Women 50-65y: 4.3×10^{6}

 $PAF = \frac{f \times (RR - 1)}{f \times (RR - 1) + 1}$

μg Cd/g crea	RR (95%CI)	% Exposed	AF (partial)	Prevalence	Attributable prevalence	Attributable cases
<0.5	1					
0.5-0.75	1.36 (1.13- 1.60)	16.35	0.06	30%	0.06 × 30%= 1.67%	1.67% × 4.3 × 10 ⁶ = 71318
≥0.75	1.52 (1.19- 1.86)	25.97	0.12	30%	3.57%	151341
Sum						222659


What is now the population attributable fraction?

$$PAR_{F} = \frac{\sum_{s=1}^{S} p_{s}(RR_{s} - 1)}{1 + \sum_{s=1}^{S} p_{s}(RR_{s} - 1)}$$

DEMOCOPHES

Cd in 16 EU countries (35-40y, >40-45y)

A life-time PBPK model was used to identify the "alert" levels of U-Cd at each age which lead to reach the 0.5 μ g/g crea at age 55-60 years

Body weight and creatinine excretion evolutions in model

Assumptions!

- Constant dietary intake
- Identical for all EU countries

23

Fractions of women exceeding a certain level of urinary Cd crea for their age range

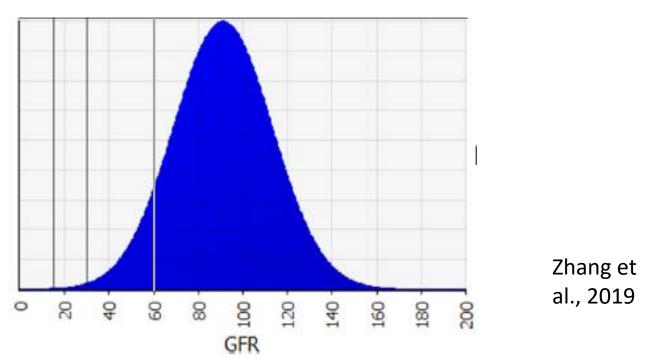
Country	N (women at age 35-40)*	% > x µg/g crea (prevalence expo)	AF 1	ADB 1 (cases)	N (women at age 41-45)*	% > y µg/g crea (prevalence expo)	AF 2	ADB 2 (cases)	Total number of cases
Be	443119	16.1%	0.054	7406	391833	7.7%	0.026	3211	10617

1. CKD

24

CKD

Exposure


ENNS (France, 60-74y, n=421)

AMBIENT_ES (Spain, 50-65y, n=119)

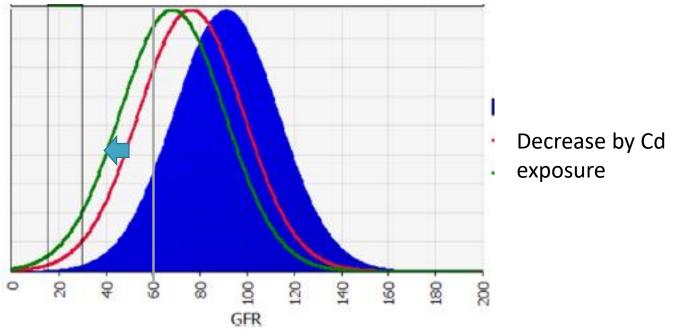
Study	Age of participants			U-Cd	conce	ntration	ns (µg/g	; crea)		
(Country)	(women), years	N	GM	95% CI GM	P10	P25	P50	P75	P90	P95
BIOAMBIENT_ES (Spain)	50-65	119	0.42	0.34-0.52	-	0.29	0.46	0.69	1.27	1.82
ENNS (France)	60-74	421	0.43	0.4-0.46	0.20	0.29	0.42	0.65	0.99	1.15

CKD (chronic kidney disease) elderly women

Definition CKD: GFR (glomerular filtration rate) < 60 ml/min/1.73m²

Stage	ml/min/1.73m ²	Consequences
3	30-59	Some patients: swelling of hands and feet, back pain,
4	15-30	Dialysis
5	0-15	Dialysis, transplant

CKD Age related



 $X_{\alpha+n} = X_{\alpha} - 0.8 n$ (after 30 or 40 years) with

 α the age category at which GFR is known

n the number of years to be added to come to age at which we want to know GFR

CKD Cd exposure related

Without ageing: $X_{cd} = X (1-0.058(UCd-1))$

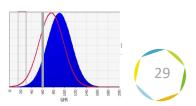
Exposure response: Akesson et al. (2005) and translated by Ginsberg et al. (2012) towards GFR: 5.8% decrease in GFR per µg Cd/g crea Threshold: 1 µg Cd/g crea Low Cd exposure

With ageing and Cd exposure included: $X_{\alpha+n,cd} = (X_{\alpha}-0.8 n)(1 - 0.058 (UCd-1))$

Cd exposure

ENNS (France, 60-74y, n=421)

AMBIENT_ES (Spain, 50-65y, n=119)


Study	Age of participants			U-Cd	conce	ntration	ns (µg/g	; crea)		
(Country)	(women), years	N	GM	95% CI GM	P10	P25	P50	P75	P90	P95
BIOAMBIENT_ES (Spain)	50-65	119	0.42	0.34-0.52	-	0.29	0.46	0.69	1.27	1.82
ENNS (France)	60-74	421	0.43	0.4-0.46	0.20	0.29	0.42	0.65	0.99	1.15

GFR (literature)

Country	GFR, mean (SD) (ml/min/1.73 m²)	Mean Age (years)	Reference
Spain	84.6 (36.7)	49.5	Otero et al., 2010
France	71.0 (15.0)	68.3	Bacchetta et al., 2010

Shift in GFR due to age

Spain: Mean GFR for 57.5y? → 84.6 – (57.5-49.5) x 0.8 = 78.2

Shift in GFR due to Cd (e.g. Spain) at P90 at P95 UCd

	Age and Cd exposure-related GFR decrease
Spain	(ml/min/1.73 m²)
	Age 57.5 (mean age of BIOAMBIENT_ES women)
P90 U-Cd concentration (1.27 μg/g crea) of the BIOAMBIENT_ES study	76.97 (SD 36.7)
P95 U-Cd concentration (1.82 µg/g crea) of the BIOAMBIENT_ES study	74.5 (SD 36.7)

Example for CKD stage 5 (0-15 ml/min/1.73m²)

	Prevalence
Age 49.5	2.89% AF = 0.07/4.25= 0.02
Age 57.5	4.25%
Age 57.5 and Cd at Cd P90	4.57%
Age 57.5 and Cd at Cd P95	5.25%
Shift in prevalence at Cd P90	4.57-4.25= 0.32%
Shift in prevalence at Cd P95	5.25-4.25= 1%
<u>Attributable prevalence</u> taken into account % of people exposed	=0.32% × 5% + 1% ×5% =0.07%
Number of attributable cases in women 50-65y	= 0.07% × 4.3 ×10 ⁶ = 2781

20 80 80

All CKD stages

CKD stage	AF
3-5	0.01

Total number of cases Spain women 50-64y: 15230

BIOAMBIENT_ES

Osteoporosis (uncertainty!)

0.5 µg Cd/g crea

PAF: 0.16

CKD

1 µg Cd/g crea

PAF: 0.01

Risk assessment EFSA, JECFA, ATSDR

Dietary intake values

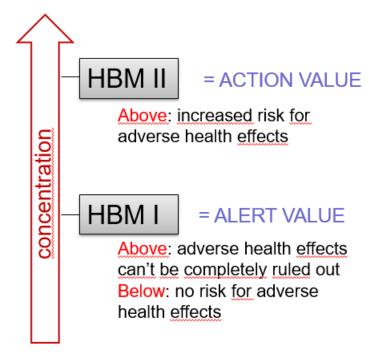
HBM?

Critical effect = kidney disfunction

Accumulation of Cd

Elderly people

Increased evidence for bone effects at low-level exposure


Risk assessment EFSA, JECFA, ATSDR

Derivation of Cd dietary intake limit values and health-based guidance values for U-Cd

	EFSA (2009)	JECFA (2010)	ATSDR (2012)		
Key study	Pooled analysis f (35 epidemiologi	Meta-analysis of environmental exposure studies			
Evaluation of tubular proteinuria & U-Cd excretion	<mark>β2-microglobulin & U</mark> (Exclusively for a population	Low molecular weight proteinuria & U-Cd (µg/g crea) (selected studies reported a dose-response relationship in sufficient detail so that the dose-response function could be reproduced independently)			
Critical U-Cd (μg/g crea)	<mark>1 µg/g crea</mark>	<mark>5.24 μg/g crea</mark>	<mark>0.5 µg/g crea</mark>		
	(BMDL ₅ of 4 μg/g crea and specific adjustment factor of 3,9 to account for human variability in U-Cd within each dose-subgroup in the analysis)	(4.94-5.57) (point of gradient change in the slope)	(95% lower confidence limit associated with 10% increased risk of low molecular weight proteinuria)		
Dietary Cd assessment model	Adapted from Amzal et al., 2009	Adapted from Amzal et al., 2009 (Cd half-life)	Kjellstrom & Nordberg, 1978		
Toxicological reference value (oral)	TWI	PTMI	MRL		
	2.5 μg/kg bw/week	2.25 μg/kg bw/month	0.1 μg/kg bw/day		
	TDI	PTWI			
	0.36 μg/kg bw/day	5.6 μg/kg bw/week			

HBM guidance values

HBMI-value: 1 µg/g crea (1µg/L) adults

A value above the HBMI is an indicator, a raised flag, that the risk is increased, not meaning that health effects are already present, seeing e.g. the uncertainties and safety factors applied. It is an indicator that there is a concern of the exposure with regard to healthbased criteria and is signal for policy-makers.

Risk assessment

External doses (EFSA)

"Conclusions were that the mean Cd exposure for adults across Europe was close to, or slightly exceeding the TWI of 2.5 μ g/kg bw/week. The exposure of some subgroups of population, such as vegetarians, children, smokers and people living in highly contaminated areas was determined to exceed the TWI by about 2-fold."

and

"EFSA concluded that there was a need to reduce exposure to Cd at the population level"

Internal doses

ENNS (France, 60-74y, n=421)


AMBIENT_ES (Spain, 50-65y, n=119)

Study	Age of participants		U-Cd concentrations (µg/g crea)					% > 1 µg/g				
(Country)	(women), years	N	GM	95% CI GM	P10	P25	P50	P75	P90	P95	crea	
BIOAMBIENT_ES (Spain)	50-65	119	0.42	0.34-0.52	-	0.29	0.46	0.69	1.27	1.82	17.4%	
ENNS (France)	60-74	421	0.43	0.4-0.46	0.20	0.29	0.42	0.65	0.99	1.15	8.0%	36

Internal doses

DEMOCOPHES

Cd in 16 EU countries (35-40y, >40-45y)

Spain, Ireland, Poland and Romania P95 > age specific U-Cd alert value A life-time PBPK model was used to identify the "alert" levels of U-Cd at each age which lead to reach the U-Cd HBM-GV of 1 μ g/g crea at age 55-60 years

Body weight and creatinine excretion evolutions in model

Assumptions!

- Constant dietary intake
- Identical for all EU countries

These results lends further support to the EFSA conclusion that Cd exposure in the general population should be reduced

Indicators

39

 A definition of an Environment Health Indicator (EHI)

An expression of the <u>link between environment and</u> <u>health</u> targeted at an issue of specific <u>policy</u> or management concern and presented in a form, which facilitates interpretation for effective decision making

(Corvalan, Briggs and Kjellstrom 2000)

Types of environmental health indicator

Environmental health indicators can thus be:

Health-based: describing a health outcome that is attributable to a known or suspected environmental cause.

E.g. Mortality rate in adults due to exposure to fine particulate matter

Exposure-based: describing an exposure (or potential for exposure) that might lead to a definable health effect.

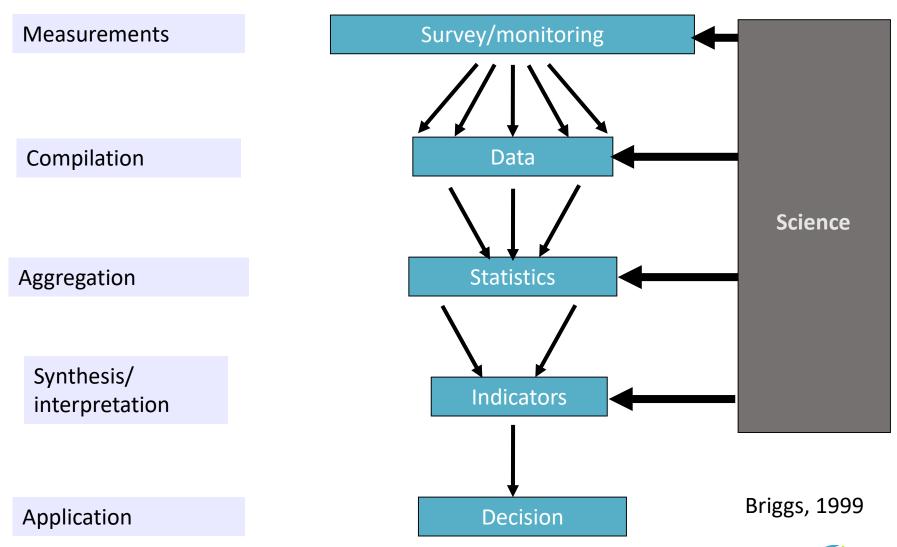
E.g. Exposure to PFOS in children

Focus on exposure-based (results indicator and impact indicator)

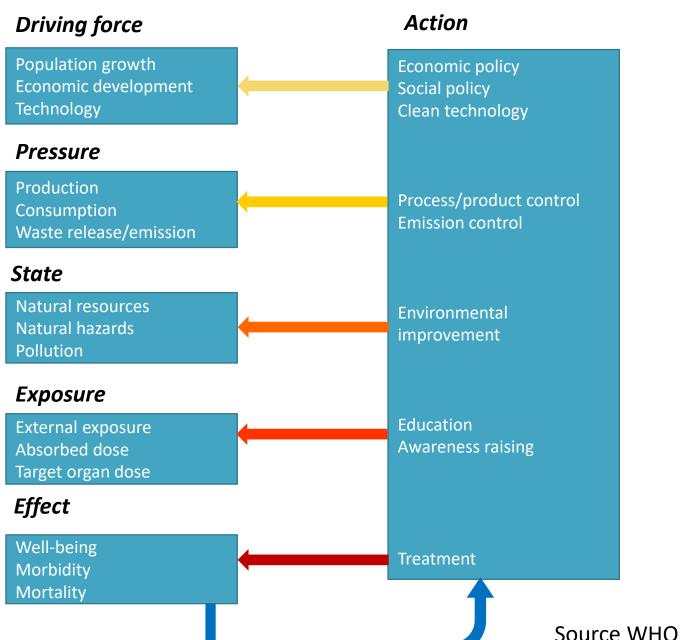
1. Indicators

- Tool to condense complex scientific information in a few key descriptors
- "Scientific data does not speaks for itself!"
- Communicate to non-expert audience
- Choice of descriptor linked to the (policy) question
- Policy questions HBM?
 - Does the body burden varies over country, age, sex?
 - Does the body burden varies by socioeconomic status (SES)?
 - Has a policy to reduce exposure shown effect (time)?
 - Is the health of a population at risk?
- Activities on E&H: EEA, WHO, Eurostat, OECD, UN SDGs (e.g. nr. 3: good health & well-being; nr. 10: reduced inequalities)

Power of indicators is comparisons


- over time (trends)
- geographic areas
- groups of people

and the focus on the most essential domains of health.


What indicators can (theoretically) do

- Give "early warning" of new problems
- Highlight causes and points for intervention
- Farget action where it is needed
- Compare and assess policy options
- Prioritise actions
- > Translate policy into management
- Monitor progress and distance to targets
- Monitor policy effects and effectiveness
- Raise awareness about roles and responsibilities
- Inform the public about policy actions
- Justify policies

The information chain

DPSEEA framework

____(

46

DPSIR chain

Driving force

Transport Agriculture Industry Energy

Pressure

Waste release/emissions Land take Landscape modification

State

Pollution Habitat loss Hydrological adjustments Climate change

Impact

Biodiversity Landscape quality Human health

Response

Transport policy Agricultural policy Regional policy Energy policy

Emission limits Planning guidance/control

Quality guidelines/standards Habitat designation Monitoring Remediation

Source OECD (Pressure-State-Response model) Applied by EEA

- 1. Metadata: descriptive
- 2. Aggregated data
- 3. Individual data

Important to include next to aggregated data also metadata in indicator

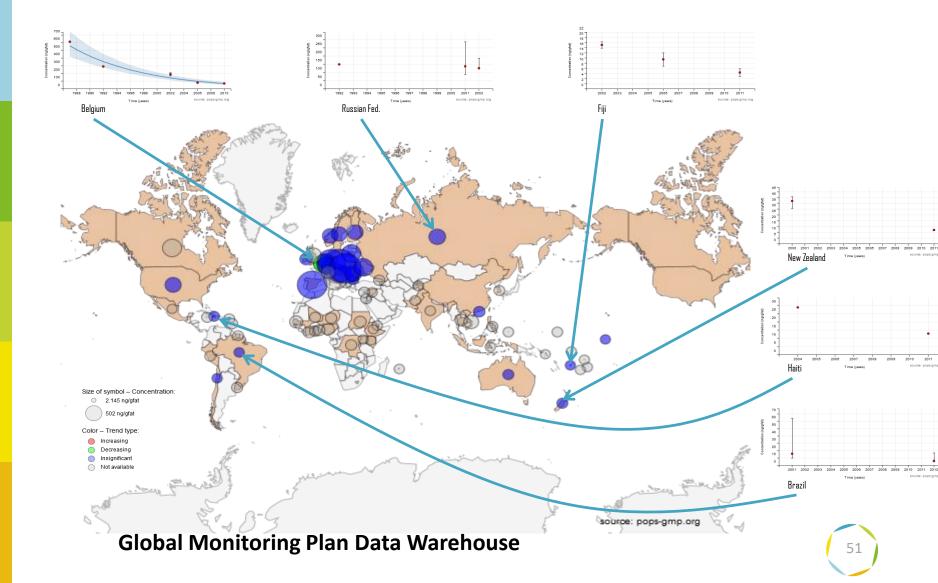
contextualisation

1. ECHI

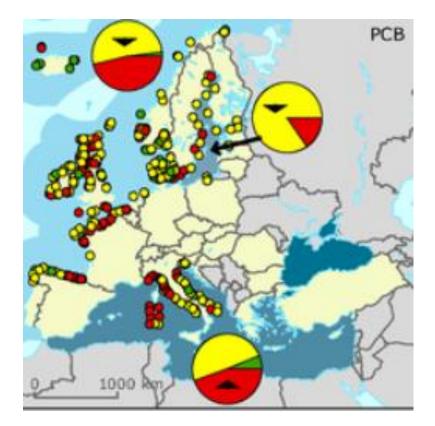
Lack of environmental health indicators in the ECHI list

Two ECHI indicators dealing with environmental health:

1. 'Smoking' providing information about the regularity people smoke cigarettes


2. *'PM10 and PM2.5 particulate matter exposure'*

https://ec.europa.eu/health/indicators_da ta/indicators_nl


Examples of indicators

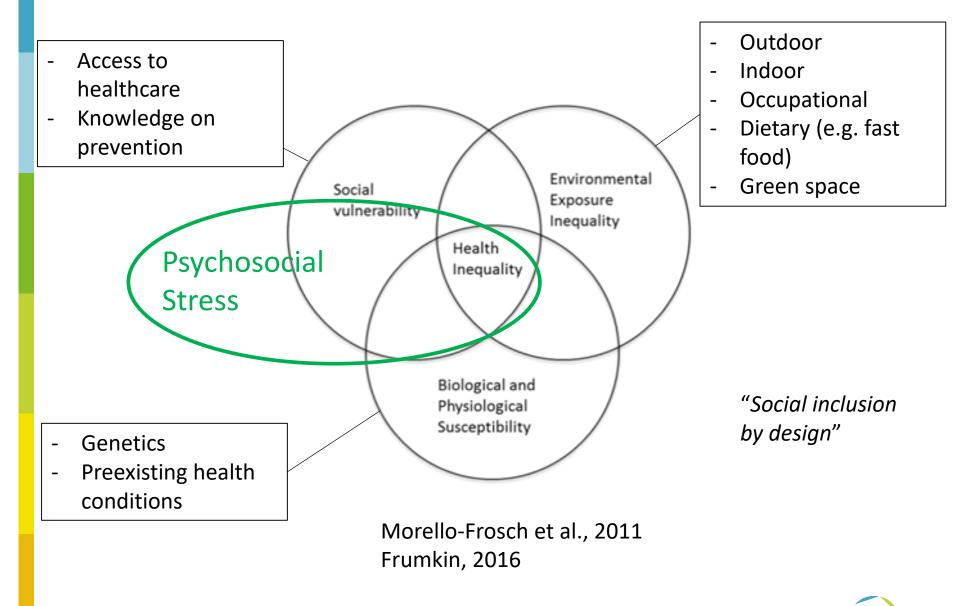
- Geographical area
- SES
- Gender
- Age
- Time
- Risk

1. Stockholm convention on POPs Indicator PCBs in human milk (sum 6 PCB)

1. EEA: Hazardous substances in marine organisms in European seas

Substances	Latin name	Low/	µg/kg	Basis	Reference	Comment	
Species and tissue		High					
CADMIUM							
						= 220 ppu i.w.	
PCB (CB28)							
Mussels	Mytilus1sp.	Low	0,75	D	OSPAR 2008	BAC limit	
Mussels	Mytilus sp.	High	3,2	D	OSPAR 2008	EAC limit	
Atlantic cod, liver	Gadus morhua	Low	0,2	W	OSPAR 2008	BAC limit times 2 (OSPAR ²)	
Atlantic cod, liver	Gadus morhua	High	64	L	OSPAR 2008	EAC limit	
Herring, muscle	Clupea harengus	Low	2	W	OSPAR 2008	BAC limit times 20 (OSPAR ²)	
Herring, muscle	Clupea harengus	High	64	L	OSPAR 2008	EAC limit	
PCB (CB 52)							
Mussels	Mytilus‡sp.	Low	0,75	D	OSPAR 2008	BAC limit	
Mussels	Mytilus sp.	High	5,4	D	OSPAR 2008	EAC limit	
Atlantic cod, liver	Gadus morhua	Low	0,16	W	OSPAR 2008	BAC limit times 2 (OSPAR ²)	
Atlantic cod, liver	Gadus morhua	High	108	L	OSPAR 2008	EAC limit	
Herring, muscle	Clupea harengus	Low	1,6	W	OSPAR 2008	BAC limit times 20 (OSPAR ²)	
Herring, muscle	Clupea harengus	High	108	L	OSPAR 2008	EAC limit	

Concentrations



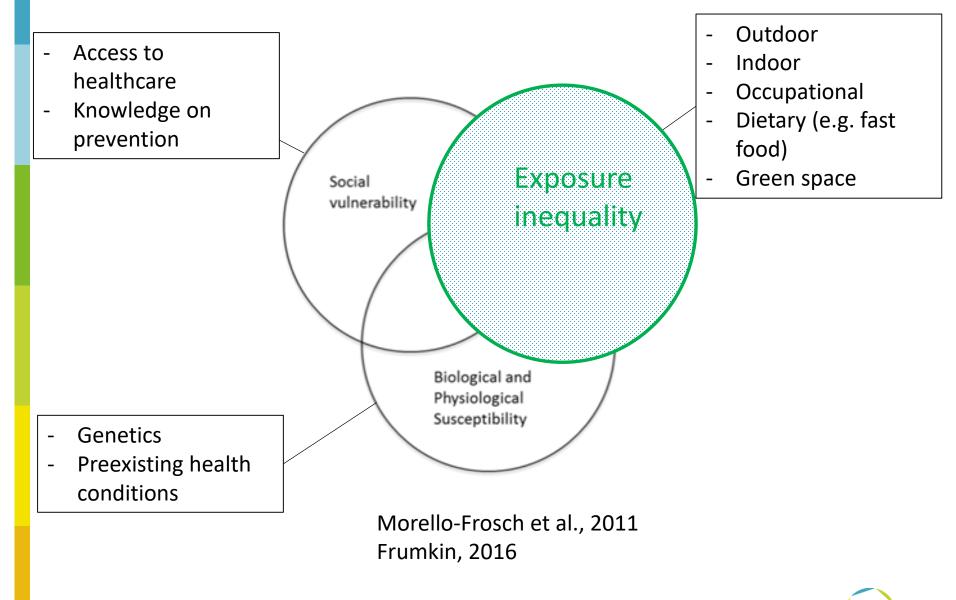
High

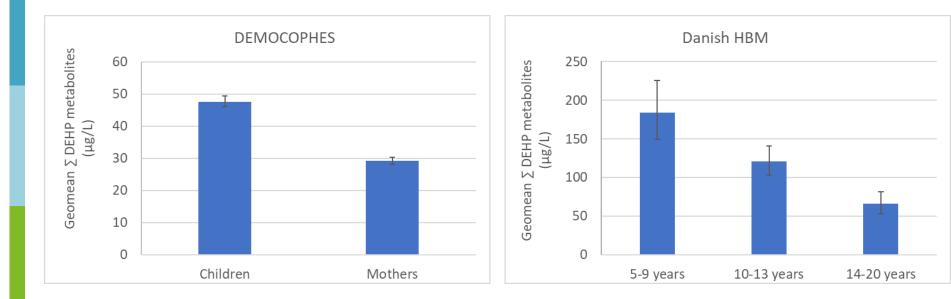
Examples of indicators

- Geographical area
- <mark>SES</mark>
- Gender
- Age
- Time
- Risk

Health inequalities – Combination of factors

Health inequalities – Combination of factors



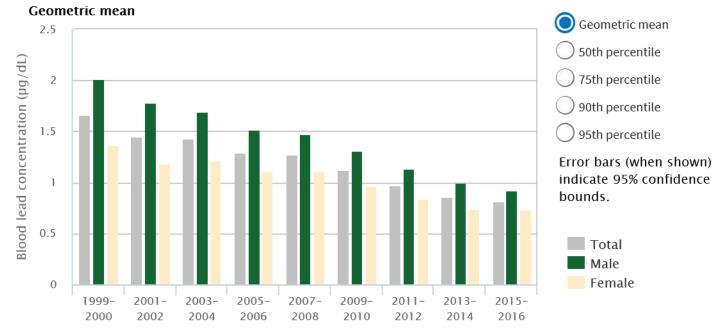

Figure will be added when report will appear (next Wednesday)

Environmental health inequalities in Europe – second assessment report 2019

Inequalties in chemical exposure (Buekers et al.)

Examples of indicators

- Geographical area
- SES
- Gender
- <mark>Age</mark>
- Time
- Risk


"Toy directive"

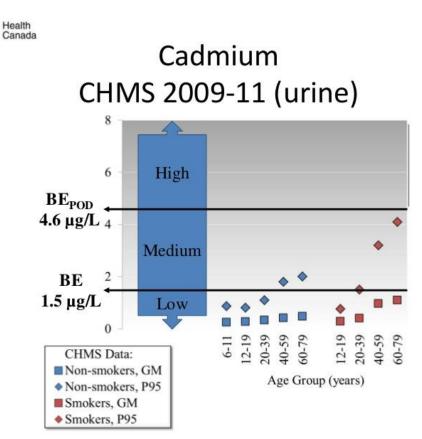
Examples of indicators

- Geographical area
- SES
- Gender
- Age
- <mark>Time</mark>
- Risk

Blood lead

Exhibit 1. Blood lead concentrations for the U.S. population age 1 year and older by sex, 1999-2016

Survey years


Information on the statistical significance of the trends in this exhibit is not presented here. For more information about uncertainty, variability, and statistical analysis, view the technical documentation for this indicator.

Data source: CDC, 2018

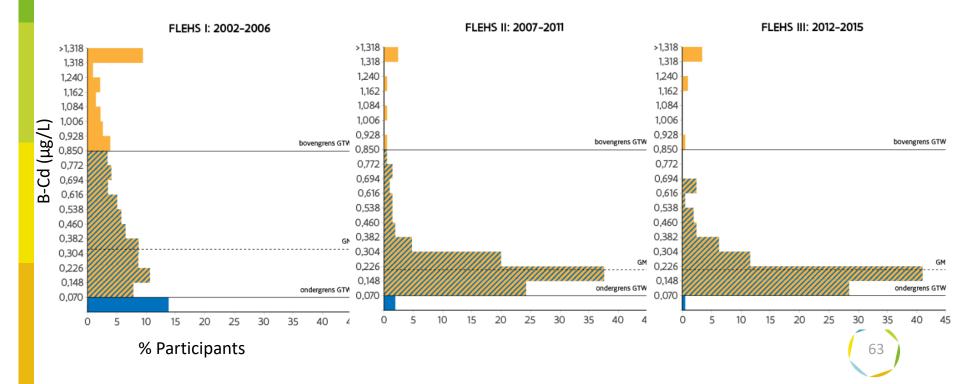
Examples of indicators

- Geographical area
- SES
- Gender
- Age
- Time
- <mark>Risk</mark>

HBM in a health risk context

Interpreting population level biomontirong: Data in a risk based context: A Canadian perspective 7/06/201

Santé Canada


> https://ww w.slideshar e.net/KateJ ones7/71-

0

1. Flemish

2. <u>https://www.milieurapport.be/milieuthemas/milieu-gezondheid/humane-biomonitoring/blootstelling-aan-cadmium-concentraties-in-bloed-van-jongeren</u>

- 1. Indicator criteria (Expert consultation)
- Policy, societal relevance (BoD useful, build-up, health inequalities)
- Possibilities for prevention and/or reduction
- Data availability & robustness (across EU)
- Transparent and easy to communicate (layered)
- Align with other indicators e.g. ECHI
- Context
- Etc.

1. Indicator types (Eurostat)

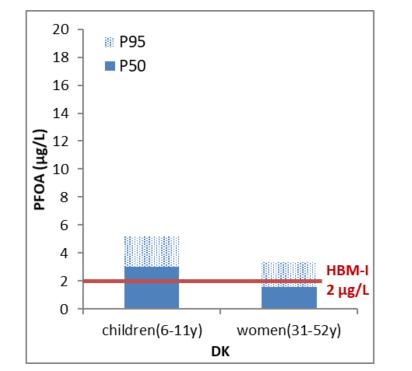
<u>Result indicator</u>: descriptive, state, referring to HBM exposure concentrations (P50, P95), HBM reference values

Impact indicator: performance, distance to target, normative HBM guidance values

a) Percentage of exceedance (P): % > HBM GV (mention number of samples!) (BRIDGEHEALTH)

b) Extent of exceedance (E): P95 / HBM GV (prioritization)

Depending of level of disaggregation: indicator split up by age, sex, SES


1. DEMOCOPHES

- 17 countries
- Consistent at European scale
- Child-mother pairs
- 3688 persons
- 2011-2012
- Published data: Cd, Hg, cotinine, BPA, PFOA, PFOS
- Aggregated data

This project has received funding from the European Union's Life programme under Agreement LIFE09/ENV/BE/000410.

1. HBM data in risk context - age

Morck et al., 2015

	n	Ρ50 (µg/L)	Ρ95 (µg/L)	HBM-I (µg/L)	Percentage of exceedance (P)	Extent of exceedance (E) based on P95
Children	116	3.02	5.21	2	>50%	2.61
Mothers	143	1.59	3.38	2	<50%	1.69

- High persistency
- PFOA: SVHC (ECHA)

As time goes by...

Contact

jurgen.buekers@vito.be

project engineer VITO studies: environmental engineering

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 733032.

🔶 vito

1. HBM-I and BE values

The HBM-I value is not equal but conceptually similar with the biomonitoring equivalent (BE) of Summit Toxicology (Hays et al. (2008)) representing an internal concentration consistent with a defined external exposure guidance value (e.g. tolerable daily intake, reference dose) below which no adverse health effects are expected **Log-linear models:** The term "log linear" is used in a number of different ways in multivariate statistics. Here, we mean a model where the dependent or "left hand" variable has been expressed on a logarithmic scale and the independent or "right hand" variable has been expressed in a linear metric. Usually, the natural log is used, so that the model looks like: ln(Y) = a + b (X) or, taking the anti-logs of both sides: Y = exp (a + b (X)).

 $Y = exp(a) \cdot exp(b(X)) = constant value \cdot exp(b(X))$ Y = B exp(b(X))

HBB

German HBM values

HBM II

= ACTION VALUE

Above: increased risk for adverse health effects

HBMI

concentration

= ALERT VALUE

Above: adverse health effects can't be completely ruled out Below: no risk for adverse health effects

Biomonitoring equivalents Derived from external exposure Concentration consistent with point of departure (NOAEL, LOAEL) high Priority for follow-up \rightarrow no uncertainty factors **BEPOD** medium BE low Concentration consistent with defined exposure guidance values (RfD, MRL, TDI) → Similar HBM I \rightarrow Incl uncertainty factors

0

1. Human biomonitoring

Integrated exposure Individual **HES Health Examination Survey Biomarkers** Exposure Effect Susceptibility Questionnaires (SES) **Determinants?**

