

REPORT OF THE WP9 ICI

Round 01/2018

Cadmium in urine

Version / date of issue	1 / 23-07-2018
Organiser	Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine (IPASUM) Friedrich-Alexander University of Erlangen-Nuremberg Henkestr. 9-11 91054 Erlangen GERMANY
Coordinator	Thomas Göen, thomas.goeen@fau.de
Author(s) (IPASUM)	Moritz Schäfer (IPASUM), Barbara Schaller (IPASUM), Karin H. A. Zarrabi (IPASUM)
Approved by:	Thomas Göen (IPASUM)

Table of contents

Т	able o	f contents	2
1	Sur	mmary	3
2	Intr	oduction	4
	2.1	Confidentiality	4
3	Coi	ntrol material	5
	3.1	Preparation of control material	5
	3.2	Homogeneity of control material	5
	3.3	Stability of control material	5
4	Org	ganisational details	6
	4.1	Participants	6
	4.2	Dispatch and instructions	6
5	Dat	a evaluation	7
	5.1	False negatives and false positives	7
	5.2	Assigned value	7
	5.3	Target standard deviation	7
	5.4	ICI standard deviation	7
	5.5	Z-scores	7
6	Res	sults and discussion	8
	6.1	Results submitted by participants	8
	6.2	Assigned values and (target) standard deviations	8
	6.3	Assessment of laboratory performance	8
	6.4	Conclusions and recommendations	8
7	Ref	ferences	. 10

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 3
Cadmium in Urine. Round 1			

1 Summary

Within the framework of the HBM4EU project, an Inter-Laboratory Comparison Investigation (ICI) was organized and conducted for the analysis of cadmium in urine. The study was performed from April 2018 to May 2018.

Nine different test samples consisting of 5 mL urine each (6 of them spiked with two different concentrations of cadmium (Cd_{low} , Cd_{high}), 3 of them containing native control material (Cd_{native})) were prepared and sent to the participating laboratories for analysis.

Homogeneity and stability assessment of the control materials confirmed that the materials were adequately homogeneous and stable.

Laboratory results were rated using z-scores in accordance with ISO 13528 and ISO 17043. The standard deviation for proficiency assessment (also called target standard deviation) was set to FFP = 25 %, as described in 5.3.

In total, 21 laboratories from 17 countries participated in the ICI. The participation in the ICI was satisfactory; 21 out of 21 laboratories submitted their results.

The evaluation showed that 85 % of the results were satisfactory, 5 % were questionable and 5 % were unsatisfactory. For one laboratory (5 %) no Z-score could be calculated (false negatives, the limit of quantification was too high).

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 4
Cadmium in Urine, Round 1			

2 Introduction

Inter-Laboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS) are tools to assess the proficiency of laboratories, and the comparability and reliability of analytical methods. Participation in ICI / EQUAS forms an integral part of quality control, in addition to initial and on-going in-house method validation.

This ICI/EQUAS study has been organised within the frame of HBM4EU as part of the Quality Assurance program for biomonitoring analyses. Within HBM4EU, participation in ICI/EQUAS exercises is mandatory for laboratories that will analyse HBM4EU samples.

This report describes the 1st round for cadmium in urine and was organised by the Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine (IPASUM) at Friedrich-Alexander University of Erlangen-Nuremberg.

2.1 Confidentiality

In this report, the identity of the participants and the information provided by them is treated as confidential. However, lab codes of the participants will be disclosed to the HBM-QAU for performance assessments.

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 5
Cadmium in Urine, Round 1			

3 Control material

3.1 Preparation of control material

For control material, surrogate material was used. It consists of human urine with the addition of sodium azide. Absence of cadmium in the native material was approved several times by homogeneity and stability testing. The stock solution (Cadmium ICP standard, $Cd(NO_3)_2$ in HNO_3 2-3 %, 1000 mg/L, Merck) was diluted into two different concentrations and the addition to the native control material resulted in the intended concentration in control material (Cd_{low} , Cd_{high}). The two spiked and the native control materials (Cd_{native} is not part of the evaluation, but only serves to show background information) were each filled with a volume of 5 mL in tubes with caps (82x13 mm, polypropylene, Sarstedt). The tubes were stored in a freezer (\leq -18 °C) until transportation. The three different concentrations (Cd_{native} , Cd_{low} , Cd_{high}) were measured by ICP-MS (see analysis method in Appendix 5). The measured concentrations are shown in Sections 3.2 and 3.3 of this report.

3.2 Homogeneity of control material

Ten tubes of each concentration of the control material (Cd_{native} , Cd_{low} , Cd_{high}) were randomly selected from the freezer (\leq -18 °C). The thawed samples were re-homogenised by vortex shaking and analysed using ICP-MS (see analysis method in Appendix 5). The homogeneity was evaluated according to ISO 13528:2015, Fearn et al [2001] and Thompson [2000]. The results are presented in Appendix 1. The conclusion is that no outliers are detected, the homogeneity is adequate and the method is suitable.

3.3 Stability of control material

In accordance with ISO 13528:2015 and the International Harmonised Protocol for the Proficiency Testing of Analytical Laboratories [Thompson 2006], ten randomly selected test samples from each concentration (Cd_{native} , Cd_{low} , Cd_{high}) were analysed by ICP-MS (see analysis method in Appendix 5). The randomly selected control materials were stored at \leq -18 °C.

The stability was evaluated using the Excel-sheet "HBM4EU ICI-EQUAS stability test CM v1". The results are presented in Appendix 2. No clear decrease was detected; minor deviations can be covered by the day-to-day imprecision of the method applied.

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 6
Cadmium in Urine. Round 1			

4 Organisational details

4.1 Participants

A list of 38 candidate laboratories from different countries eligible for the analysis of cadmium had been compiled by the Work Package (WP) Task 9.2 leaders and made available to the institution organizing the respective ICI. However, as one candidate laboratory on the list was the organiser itself, finally only 37 candidate laboratories were considered. This was in line with the Standard Operation Procedure HBM4EU-SOP-QA-001, according to which a laboratory involved in the organisation of an ICI/ EQUAS for a certain biomarker/ matrix cannot participate in the ICI/ EQUAS studies for that particular biomarker/ matrix combination

Invitation letters were thus sent by e-mail to 37 candidate laboratories on 23rd February 2018 (see Appendix 3). It was indicated that participation would be free of charge, and that those who subscribed to the ICI would receive a kit containing the test materials needed for analysis. The condition for participation was that the test results had to be submitted within the stipulated deadline (1st May 2018).

Twenty-one laboratories from 17 countries out of the 37 laboratories (57%) in the revised candidate list indicated their interest in participating in this ICI and sent their registration form to IPASUM, with their agreement to abide by the conditions for participation. These laboratories received an individual laboratory code to report their measurement results.

From the 21 potential participants, 21 performed the assays and submitted their results.

4.2 Dispatch and instructions

Test materials were dispatched to the participants under ambient conditions on 3rd April 2018. Each participant received nine vials consisting of 5 mL urine each. Six vials were spiked with the biomarker, while three vials contained native control material. Moreover, a letter with instructions on sample handling (instruction letter, see Appendix 4), a sample receipt form to be sent back to IPASUM upon receipt of the test material as well as a result submission form and a method information form were sent to the participants by e-mail. The latter form was used to extract relevant information related to the analytical method used for quantification.

Participants were asked to perform a single analysis of each sample using the same procedure as will be used for analysis of samples in the frame of HMB4EU and to report results following the instruction given.

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 7
Cadmium in Urine, Round 1			

5 Data evaluation

5.1 False negatives and false positives

Three of 21 participating laboratories measured false negatives in control material Cd_{low} and Cd_{high}.

5.2 Assigned value

For ICI studies, the consensus value is used as assigned value and calculated as described in SOP HBM4EU-SOP-QA-003. In brief, the consensus values and its uncertainty were calculated from the results submitted by the participants using robust statistics to minimize the influence of outliers.

5.3 Target standard deviation

For calculation of the Z-scores, Fit-for-purpose (FFP = 25 %) target standard deviation was used because the criteria applied to the first round were not that strict.

5.4 ICI standard deviation

To gain insight into the actual variability of the biomarker analysis in this study, the robust relative standard deviation was calculated as described in HBM4EU-SOP-QA-003.

5.5 Z-scores

Z-scores were calculated according to SOP HBM4EU-SOP-QA-003.

In accordance with ISO 13528 and ISO 17043 and the deliverable D 9.4 "The Quality Assurance/Quality Control Scheme in the HBM4EU project, Z-scores are classified as presented in Table 1.

Table '	1:	Classification	of	Z-scores

Table 1. Classification of Z-scores			
$ Z \leq 2$	Satisfactory		
2 < Z < 3	Questionable		
$ Z \ge 3$	Unsatisfactory		

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 8
Cadmium in Urine, Round 1			

6 Results and discussion

6.1 Results submitted by participants

In total, 21 laboratories from 17 countries agreed to participate in this study. All of them submitted results. However, as this was the first round, not all participants were able to meet the stipulated deadline due to technical problems.

An overview of results, method information and urine properties (creatinine, osmolality, specific gravity) submitted by the participants is included in Appendix 8.

Two of 21 participating laboratories (QR/101 and QR/108) measured false negatives (one out of three in Cd_{low}). The participant's LOQ is below [assigned value - 3*target standard deviation]. That's the reason why the value "0" is used as input for the mentioned control materials for calculation of the Z-score.

One of 21 participating laboratories (QR/110) measured false negatives (three out of three in Cd_{low} and three out of three in Cd_{high}). The participant's LOQ is not below [assigned value – 3*target standard deviation]. This is the reason why no Z-score can be calculated for this participant. The method LOQ is too high to be fit-for-purpose.

6.2 Assigned values and (target) standard deviations

The assigned value and its uncertainty, the relative standard deviation as derived from the participant's data, and the fit-for-purpose target standard deviation for each of the analytes/ control materials are included in Appendix 6.

6.3 Assessment of laboratory performance

Z-scores were calculated for all quantified biomarkers and a graphical representation of the Z-scores is provided in Appendix 7.

Twenty-one laboratories out of 21 registered candidate laboratories reported results. Eighteen laboratories have satisfactory Z-scores in Cd_{low} and Cd_{high}. Two laboratories have questionable results (QR/108 in Cd_{low} and QR/101 in Cd_{high}). One laboratory has unacceptable Z-scores and for one laboratory no Z-score could be calculated (see appendix 6).

6.4 Conclusions and recommendations

The overall participation in the HBM4EU ICI Round 1 was successful. Twenty-one laboratories out of the 37 laboratories (56%) in the revised candidate list confirmed their participation in the ICI. All of these 21 registered candidate laboratories reported results, representing a participation rate of 100%.

Regarding the quantification of cadmium in urine, 85 % of the results were satisfactory, 5 % were questionable and 5 % were unsatisfactory. For one laboratory (5 %) no Z-score could be calculated. 90 % of the participating laboratories used ICP-MS and 10 % used AAS as analytical instrument.

An overview of the analytical methods applied and the overall performance of the individual laboratories is given in the table below.

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 9
Cadmium in Urine, Round 1			

Overview of analytical methods applied and overall performance of the individual laboratories

			Cd _{low}	Cdhigh	
Lab.	Analytical	1.00	+ $(Z \le 2)$,	+ $(Z \le 2)$,	Result
code	method	LOQ	\circ (2 < $ Z $ < 3),	$\circ (2 < Z < 3),$	Result
			$-(Z \ge 3)$	$-(Z \ge 3)$	
QR/101	ICP-MS	0.022	+	0	questionable**
QR/102	AAS	0.024	+	+	approved
QR/103	ICP-MS	0.050	+	+	approved
QR/104	ICP-MS	0.160	+	+	approved
QR/105	ICP-MS	0.100	+	+	approved
QR/106	ICP-MS	0.025	+	+	approved
QR/107	ICP-MS	0.008	+	+	approved
QR/108	ICP-MS	0.030	0	+	questionable**
QR/109	ICP-MS	0.050	+	+	approved
QR/110	ICP-MS	1.250	ND*	ND*	not approved
QR/111	ICP-MS	0.066	+	+	approved
QR/112	ICP-MS	0.050	+	+	approved
QR/113	ICP-MS	0.100	+	+	approved
QR/114	ICP-MS	0.070	+	+	approved
QR/115	ICP-MS	0.010	+	+	approved
QR/116	ICP-MS	0.033	+	+	approved
QR/117	ICP-MS	0.003	+	+	approved
QR/118	ICP-MS	0.003	+	+	approved
QR/119	AAS	0.095	-	-	not approved
QR/120	ICP-MS	0.050	+	+	approved
QR/121	ICP-MS	0.048	+	+	approved

^{*} ND = not detected/ not assessable

^{**} A final evaluation will take place upon completion of all three rounds as an overall assessment of the participant's performance in ICI Round 1, ICI Round 2 and EQUAS.

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 10
Cadmium in Urine, Round 1			

7 References

- [1] Analytical Methods Committee, 1989a, Robust statistics How not to reject outliers Part 1. Basic concepts, Analyst, 114, 1693-1697.
- [2] Analytical Methods Committee, 1989b, Robust statistics How not to reject outliers Part 2. Interlaboratory trials, Analyst, 114, 1699-1702
- [3] HBM4EU-SOP-QA-001 "Organisation of Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS) of interlaboratory studies"
- [4] HBM4EU-SOP-QA-002 "Preparation of test materials for ICI / EQUAS"
- [5] HBM4EU-SOP-QA-003 "Evaluation of ICI / EQUAS results"
- [6] HBM4EU-SOP-QA-004 "Reporting of ICI / EQUAS studies"
- [7] ISO/IEC 17043:2010, Conformity assessment General requirements for proficiency testing
- [8] ISO 13528, 2015, Statistical methods for use in proficiency testing by interlaboratory comparison.
- [9] Official Methods of Analysis Program Manual, 2002, Appendix D: Guidelines for Collaborative Study Procedures to Validate Characteristics of a Method of Analysis. Association of Analytical Communities International. http://www.aoac.org/vmeth/Manual_Part_6.pdf.
- [10] Thompson, M., 2000, Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing, Analyst, 125, 385-386.
- [11] Thompson M., Ellison R. and Wood, R., 2006, The International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories, Pure Appl. Chem, 78(1), 145-196.

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 11
Cadmium in Urine. Round 1			

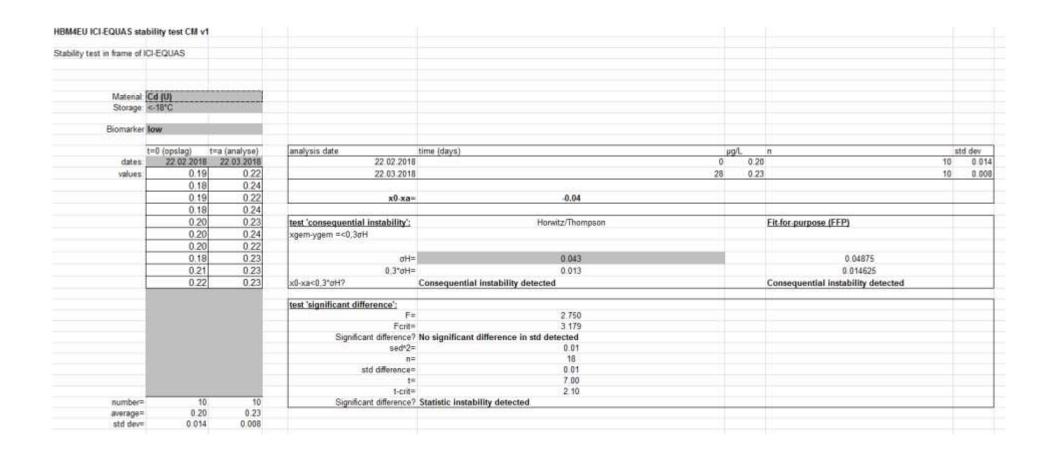
Appendix 1. Homogeneity data

Homogenei Version HBM4EU v1	-,								-
Zersion FIBIVIAEO AL									
Control material:		urin	_		Target etand	and davi	ation.		
Control material:		urine	е		Target standa Fit-for-purpose		FFP	(25% is defa	ult value)
Analyte:		Cadmi	um		if you want to				uit value)
Analyto.		Caumi	um		then delete FFF			3011,	
Preparation of con	trol material:	nativ	e		then delete i i i	monii co	1110		
		analysed in duplica							
	,								
[1] ISO 13528:2005	5								
		01, A New Test for	'Sufficient hon	nogeneity', A	Analyst, 126, 14	14-1417			
		nds in inter-laborate							
		riteria in proficiency							
	replicate 1	replicate 2		x_t	W t	W,2	(X:X)2		
1	0.07	0.09		0.08	-0.02	0.00	0.00		
2	0.06	0.09		0.08	-0.03	0.00	0.00		
3	0.11	1		0.10	0.02	0.00	0.00		
4	0.11	0.09		0.10	0.02	0.00	0.00		
5	0.09			0.09		0.00	0.00		
6	0.08	-		0.09		0.00	0.00		
7	0.10			0.10		0.00	0.00		
8	0.09			0.09		0.00	0.00		
9	0.08			0.09		0.00	0.00		
10				0.09		0.00	0.00		
	0.00	0.00		0.00	0.01	0.00	0.00		
Lowest:		0.06	μg/kg		Σ=	0.00	0.00		
Highest			μg/kg		_				
Grand mean (r):			μg/kg						
Stdev:			μg/kg						
VC%:		12.8%	μg/kg						
	Outliers: Coc	hran's test							
	$C=W_{max}^2/\Sigma W_t^2$								
	> C =	0.360							
	> Ccrit=	0.602		C < Ccrit	→ No outliers	detecte	d		
	Horwitz [3]:								
	M 400	b. CV/ O/4 1/ last a)			M 420	L 0'	20-	FFD /64 6	
	Mean > 120 pp	b: CV=2(1-1/2 log c)			Mean < 120 pp	D: σ = 0,2	22C	FFP (fit-for-p	urpose)
	RSD%=	SE 10			RSD%=	22		PCD0/-	25
		65.19				22		RSD%=	
	σ _H =	0.06			σ _H =	0.02		σ _H =	0.02
	σ _H used:	0.02							
	Homogeniteit	[1]:							
	s _x =	0.01							
	s _w =	0.01	(within sample	e standard o	deviation)				
	s =	0.00	(between san	nple standar	rd deviation)				
	critical=	0.01							
	critical=	0.01							
	critical= ss < critical?	0.01 → ACCEPT: Home	ogeneity ade	quate					

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 12
Cadmium in Urine, Round 1			

Version HBM4EU v1									
Control material:		urin	e						
A b d		0.1							value)
Analyte:		Cadmi	um					son,	
Prenaration of cont	rol material:	low			men delete FF	- Irom ce	ii nə		
Homogeneity									
To randomly oncod	ii toot oaiiipioo,	analy cod in dapilo							
[1] ISO 13528:2005									
						rations in			
relation to fitness	s for purpose cr	riteria in proficiency	testing, Analys	st, 125, 385	-386				
	renlicate 1	renlicate 2		v	w	w 2	/v or 12		
		-							
J		1							
		1							
		1							
		1							
		1							
_		1							
					Σ=	0.00	0.00		
-									
V G /0.		4.3%	рулку						
	Outliers: Cocl	hran's test							
	$C=W_{max}^2/\Sigma W_t^2$								
	> Ccrit=	0.602		C < Ccrit	→ No outliers	detecte	d		
	Honwitz [3]:								
	HOLWITZ [3].								
	Mean > 120 ppl	b: CV=2(1-1/2 log c)			Mean < 120 pp	b: σ = 0,2	22c	FFP (fit-for-pur	pose)
						,			
					RSD%=			RSD%=	
	σ _H =				σ _H =	0.04		σ _H =	0.05
	σ _H used:	0.05							
	Homogeniteit	[1]:							
	0 -	0.01							
			/ab: :		Andreas - N				
	S _s =	0.00	(between sam	ple standa	rd deviation)				
	critical=	0.01							
	e < critical?	ACCEPT Home	nganaity ada	uuate					
				quate					

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 13
Cadmium in Urine, Round 1			


Homogenei /ersion HBM4EU v1	-,								

Control material:		urin	e		Target stand	ard devi	ation:		
					Fit-for-purpose		FFP	(25% is defau	ult value)
Analyte:		Cadmi	um		if you want to			son,	
					then delete FF	P from ce	II H5		
Preparation of con		high		_					
10 randomly chose	en test samples,	analysed in duplica	ite						
[1] ISO 13528:2005									
		01, A New Test for	'Sufficient hor	mogeneity', A	Analyst, 126, 14	14-1417			
		nds in inter-laborate							
relation to fitnes	s for purpose c	riteria in proficiency	testing, Analy	/st, 125, 385	-386				
						2	A 12		
	replicate 1	replicate 2		X _t	W:		(X:X)2		
1	0.44			0.45		0.00	0.00		
2	0.45	4		0.45		0.00	0.00		
3	0.42 0.43	1		0.44		0.00	0.00		
5	0.43	1		0.44		0.00	0.00		
6	0.48			0.46		0.00	0.00		
7	0.45	1		0.47		0.00	0.00		
8	0.47	0.45		0.45		0.00	0.00		
9	0.45	4		0.45		0.00	0.00		
10	0.47	0.45		0.46		0.00	0.00		
Lowest:		0.42	μg/kg		Σ=	0.00	0.00		
Highest			μg/kg						
Grand mean (₹):			μg/kg						
Stdev:			μg/kg						
VC%:		2.576	μg/kg						
	Outliers: Cocl	hran's test							
	$C=w_{max}^2/\Sigma w_t^2$								
	> C =	0.281							
	> Ccrit=	0.602		C < Ccrit	→ No outliers	detecte	d		
	Horwitz [3]:								
	Mean > 120 ppl	b: CV=2(1-1/2 log c)			Mean < 120 pp	b: σ = 0,2	22c	FFP (fit-for-pu	urpose)
	RSD%=	51.02			RSD%=	22		RSD% =	25
	σ _H =	0.23			σ _H =	0.10		σ _H =	0.11
	σ _H used:	0.11							
	Home	F41.							
	Homogeniteit	i [1]i							
	S _x =	0.01							
		0.01	(within sampl	le etandard :	deviation)				
	S _W =								
		0.00	(between sar	mpie standai	u deviation)				
	S _s =							I	
		0.03							
	critical=	0.03							
		0.03 → ACCEPT: Home	ogeneity ade	equate					

WP9 ICI Report, Round 01/2018	Version: 1	Date of issue: 23-07-2018	Page: 14
Cadmium in Urine, Round 1			

Appendix 2. Stability data

HBM4EU ICI-EQUAS sta	bility test CM v	1							
0.170.1.17.1	IOLEO LA O								
Stability test in frame of	U-EQUAS								
Material:	Cd (U)								
Storage:	<-18°C								
Biomarker	native								
	t=0 (storage)	t=a (analysis)	analysis date	time (days)			n		std dev
dates:		22.03.2018	22.02.2018		0	0.09		10	
values:	0.07		22.03.2018		28	0.13		10	0.009
	0.06								
	0.11	0.14	x0-xa=	-0.04					
	0.11	0.12							
	0.09	0.13	test 'consequential instability':	Horwitz/Thompson			Fit-for-purpose (FFP)		
	0.08	0.12	xav-yav =<0,3σH	·					
	0.10								
	0.09		σH=	0.019			0.02175		
	0.08		0,3*σH=				0.006525		
	0.08		x0-xa<0,3*σH?	Consequential instability detected			Consequential instability detected		
				,			,		
			test 'significant difference':						
			F=						
			Fcrit=						
				Significant difference in std detected					
			sed^2=						
			n=						
			std difference=						
			t=						
number=	40	10	t-crit=	2.10 Statistic instability detected					
			Significant difference	Statistic instability detected					
average= std dev=									
Stu dev-	0.010	0.003							

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 15
Cadmium in Urine, Round 1			

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 16
Cadmium in Urine, Round 1			

	ability test CM v1							
ty test in frame of	ICI-EQUAS							
Material: Storage:	(Cd (U)	j						
Stolage.	V-10 C							
Biomarker	high							
	t=0 (opslag)	t=a (analyse)	analysis date	time (days)	μα/L	n	std dev	V
dates:			22.02.2018		0.45		10 0.	019
values:			22.03.2018	28	0.47		10 0.	010
	0.45							
	0.42		x0-xa=	-0.02				
	0.43							
	0.46		test 'consequential instability':	Horwitz/Thompson		Fit-for-purpose (FFP)		
	0.48	0.47	xgem-ygem =<0,3σH					
	0.45							
	0.47	0.48	σH=	0.099		0.113		
	0.45		0,3*σH=	0.030		0.0339		
	0.47	0.46	x0-xa<0,3*σH?	No consequential instability detected		No consequential instability detected		
			test 'significant difference':					_
			F=					
			Fcrit=					
				Significant difference in std detected				
			sed^2=					
			n=					
			std difference= t=					
			t-crit=					
number=	10	10		Statistic instability detected				
average=			Signatura difference :					_
std dev=								

WP9 ICI Report, Round 01/2018	Version: 1	Date of issue: 23-07-2018	Page: 17
Cadmium in Urine, Round 1			

Appendix 3. Copy of letter of invitation

HBM4EU: Announcement / invitation to participate in ICI / EQUAS study Cd/Round 1

Title of ICI/EQUAS: Cadmium in blood and urine

Dear Colleague,

within the frame of HBM4EU the

Institute and Outpatient Clinic for Occupational-, Social- and Environmental Medicine

Friedrich-Alexander University Erlangen-Nuremberg

Henkestr. 9-11

91054 Erlangen

Germany

announces the 1st round of ICI/EQUAS for the determination of Cadmium in blood and urine. The aim of ICI/EQUAS exercises is to provide laboratories with an assessment of their analytical performance and reliability of their data in comparison with other laboratories and/or expert laboratories. This will aid in the quality improvement of analysis in human biomonitoring at each of the laboratories.

Participation is mandatory for laboratories analysing samples in the frame of HBM4EU.

Test samples

The matrices will be blood and urine, respectively the participants will receive:

- 3 different materials of blood (3 samples of 3mL each) for determination of cadmium in blood and/or
- 3 different materials of urine (3 samples of 5mL each) for determination of cadmium in urine

Target biomarkers

The biomarker potentially present in the test samples is Cadmium. We recommend at least the following LOQ for the parameters:

LOQ for Cadmium in blood: 0.15 μg/L LOQ for Cadmium in urine: 0.05 μg/L

Calendar:

Deadline registration 09-03-2018
Distribution of test samples (projected) 23-03-2018
Deadline for reporting the results (projected) 20-04-2018

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 18
Cadmium in Urine, Round 1			

Registration

For registration, please find attached a registration form for parameter Cadmium in blood and one for parameter Cadmium in urine. Please send them back to us by mail in case you want to register. Upon registration, the participant will receive a lab-code to be used for submission of results.

Fee

For partners and linked-third parties of HBM4EU, participation is free of charge. Please note that the participant is responsible for custom clearance and associated costs if applicable.

Confidentiality:

All laboratory specific information will be treated confidentially, and will never be disclosed to third parties (government, accreditation bodies) except the HBM4EU QAU, without permission of the laboratory

Contact information organiser:

Coordinators:

- Prof. Dr. Thomas Göen
- Barbara Schaller, MD

Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine Friedrich-Alexander University Erlangen-Nuremberg Henkestr. 9-11 91054 Erlangen Germany

Email: ipasum-hbm4eu@fau.de

Barbara.schaller@fau.de

Tel.: + 49 (0)9131/8522374

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 19
Cadmium in Urine, Round 1			

Appendix 4. Copy of letter/instructions sent together with test samples

HBM4EU: Instruction letter ICI / EQUAS study Cd in urine/Round 1

Title of ICI/EQUAS: Cadmium in urine

Dear participant,

Thank you for participation in HBM4EU ICI/EQUAS study Cd in urine/Round 1 for the determination of Cadmium in urine.

You will receive a parcel containing 9 test samples. Each sample consists of approximately 5 mL urine. 3 vials will contain raw control material, 2x3 are spiked with the biomarker. Only the results of the analysis of the spiked material will be considered for certification.

The parcel will be shipped on 03.04.2018 under ambient conditions.

Instructions:

- Upon receipt, please check the content for any damage/leaking of the containers, complete the sample receipt form and return it to the organiser.
- Store the test samples under frozen (-18°C) conditions until analysis.
- Analyse the samples for the biomarkers indicated in the invitation letter ref/23.02.2018.
- Thaw the samples and re-homogenise them according to your own procedure.
- Analyse the samples using the same procedure as will be used for analysis of samples in the frame of HBM4EU.
- Carry out a single analysis for each sample.
- For submission of results and method information use the forms provided the next days by email.
- The deadline for submission of analysis results and method details is 01.05.2018.

If you have any questions or need any assistance, please contact:

Barbara Schaller Moritz Schäfer

Email: ipasum-hbm4eu@fau.de

Barbara.schaller@fau.de Moritz.Schaefer@fau.de

Tel.: + 49 (0)9131/8522374

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 20
Cadmium in Urine, Round 1			

Appendix 5. ICP-MS method information IPASUM

HBM4EU: Method information form for participation in ICI study Cd/Round 1

Title of ICI: Cadmium in urine

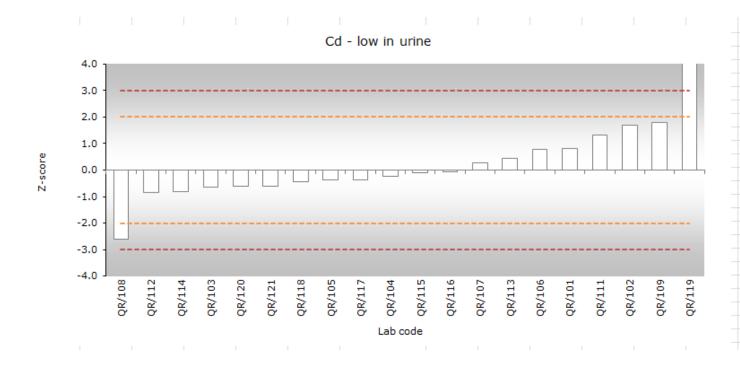
Laboratory code	IPASUM Erlangen - Germany	
ISO17025 accredited	no	
SAMPLE PREPARATION		
amount sample	0.4	ml
Extraction	-	
- pH adjustment		
- LLE; solvent(s) / time / shaking		
- SPE; material		
Digestion	-	
INSTRUMENTAL ANALYSIS		
AAS	no	
Wavelength		
Background compensation		
Matrix modifier		
Dilution factor		
Other remarks		
ICP	yes (Nexion3xx PerkinElmer)	
Dilution	1:10 with H ₂ 0 and HNO ₃	
Nebulizer	PFA-ST	
Reagent gas	argon	
Masses monitored	Cd ¹¹⁴	
Detection		
	single guad	
MS OES	single quad	
UES		

Quantification		
Use of internal standard (IS)	yes (Rh ¹⁰³)	
- response normalised to IS	yes	

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 21
Cadmium in Urine, Round 1			

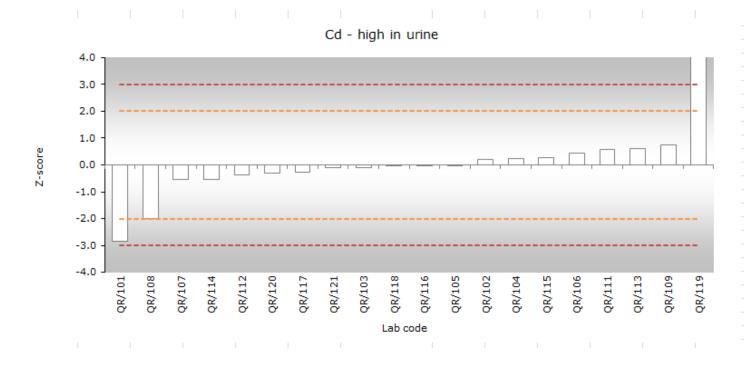
Calibration	external calibrant (matrix based)	
	multi-level	
Correction for recovery	no	
Identification criteria used		
- ion ratio tolerance	% relative	
- other		

Further remarks/observations:


WP9 ICI Report, Round 01/2018	Version: 1	Date of issue: 23-07-2018	Page: 22
Cadmium in Urine, Round 1			

Appendix 6. Assigned values and participant's performance

Control material		Cd (urine) HBM4EU 01/2018		
Cadmium (urine)	(Cd _{low}	С	d _{high}
assigned value <ng ml=""></ng>	0	.2378	0.	4483
uncertainty of assigned value < ng/mL >	0	.0139	0.	0160
study RSD _R (%)	2	20.94	1	2.80
Relative target standard deviation (%)	2	24.98	2	5.01
Laboratory code	value	Z-score	value	Z-score
QR/101	0.29	0.82	0.13	-2.84
QR/102	0.34	1.69	0.47	0.19
QR/103	0.20	-0.63	0.44	-0.09
QR/104	0.22	-0.24	0.48	0.25
QR/105	0.22	-0.38	0.45	-0.01
QR/106	0.29	0.79	0.50	0.46
QR/107	0.25	0.26	0.39	-0.54
QR/108	0.08	-2.59	0.23	-1.98
QR/109	0.35	1.80	0.53	0.73
QR/110	-	-	-	-
QR/111	0.32	1.30	0.51	0.59
QR/112	0.19	-0.83	0.41	-0.36
QR/113	0.26	0.45	0.52	0.60
QR/114	0.19	-0.81	0.39	-0.53
QR/115	0.23	-0.10	0.48	0.26
QR/116	0.23	-0.08	0.45	-0.03
QR/117	0.22	-0.38	0.42	-0.27
QR/118	0.21	-0.43	0.45	-0.03
QR/119	1.12	14.84	1.30	7.64
QR/120	0.20	-0.62	0.41	-0.31
QR/121	0.20	-0.60	0.44	-0.09


WP9 ICI Report, Round 01/2018	Version: 1	Date of issue: 23-07-2018	Page: 23
Cadmium in Urine, Round 1			

Appendix 7. Graphical representation of the Z-scores

Lab	Z-score	Z'-score	Z _r -score	Z'r-score	
QR/108	-2.59	-2.52	-2.59	-2.52	
QR/112	-0.83	-0.81	-0.83	-0.81	
QR/114	-0.81	-0.79	-0.81	-0.79	
QR/103	-0.63	-0.61	-0.63	-0.61	
QR/120	-0.62	-0.60	-0.62	-0.60	
QR/121	-0.60	-0.59	-0.60	-0.59	
QR/118	-0.43	-0.42	-0.43	-0.42	
QR/105	-0.38	-0.37	-0.38	-0.37	
QR/117	-0.38	-0.37	-0.38	-0.37	
QR/104	-0.24	-0.24	-0.24	-0.24	
QR/115	-0.10	-0.09	-0.10	-0.09	
QR/116	-0.08	-0.08	-0.08	-0.08	
QR/107	0.26	0.25	0.26	0.25	
QR/113	0.45	0.44	0.45	0.44	
QR/106	0.79	0.77	0.79	0.77	
QR/101	0.82	0.80	0.82	0.80	
QR/111	1.30	1.27	1.30	1.27	
QR/102	1.69	1.65	1.69	1.65	
QR/109	1.80	1.76	1.80	1.76	
QR/119	14.84	14.45	14.84	14.45	
0					
0					
0					
0					

WP9 ICI Report, Rou	nd 01/2018	Version: 1	Date: 23-07-2018	Page: 24
Cadmium in Urine, Ro	ound 1			

Lab	Z-score	Z'-score	Z _r -score	Z'r-score
QR/101	-2.84	-2.81	-2.84	-2.81
QR/108	-1.98	-1.96	-1.98	-1.96
QR/107	-0.54	-0.54	-0.54	-0.54
QR/114	-0.53	-0.53	-0.53	-0.53
QR/112	-0.36	-0.36	-0.36	-0.36
QR/120	-0.31	-0.31	-0.31	-0.31
QR/117	-0.27	-0.26	-0.27	-0.26
QR/121	-0.09	-0.09	-0.09	-0.09
QR/103	-0.09	-0.09	-0.09	-0.09
QR/118	-0.03	-0.03	-0.03	-0.03
QR/116	-0.03	-0.03	-0.03	-0.03
QR/105	-0.01	-0.01	-0.01	-0.01
QR/102	0.19	0.19	0.19	0.19
QR/104	0.25	0.25	0.25	0.25
QR/115	0.26	0.26	0.26	0.26
QR/106	0.46	0.45	0.46	0.45
QR/111	0.59	0.59	0.59	0.59
QR/113	0.60	0.60	0.60	0.60
QR/109	0.73	0.72	0.73	0.72
QR/119	7.64	7.56	7.64	7.56
0				
0				
0				
0				

WP9 ICI Report, Round 01/2018	Version: 1	Date: 23-07-2018	Page: 25
Cadmium in Urine, Round 1			

Appendix 8. Results of the shipped test samples and analytical instrument used by the participants

Cadmium in urine [ng/mL]														
Lab. code	Native -1	Native -2	Native -3	Low -1	Low -2	Low -3	High -1	High -2	High -3	LOQ	Analytical instrument	Creatinine [g/L]	Osmolality [mOsm/kg]	Specific gravity [g/L]
QR/101	0.760	0.260	ND	0.630	ND	0.230	0.040	0.120	0.230	0.022	ICP-MS	-	-	-
QR/102	0.164	0.192	0.174	0.514	0.327	0.174	0.514	0.519	0.377	0.024	AAS	-	-	-
QR/103	0.086	0.074	0.071	0.199	0.222	0.180	0.440	0.433	0.443	0.050	ICP-MS	0.408	_	1.011
QR/104	0.180	0.150	0.012	0.230	0.260	0.180	0.420	0.590	0.420	0.160	ICP-MS	0.440	-	-
QR/105	0.147	0.109	0.103	0.215	0.215	0.215	0.449	0.460	0.433	0.100	ICP-MS	-	-	-
QR/106	0.092	0.092	0.096	0.439	0.213	0.203	0.537	0.476	0.485	0.025	ICP-MS	0.530	-	-
QR/107	0.210	0.191	0.189	0.278	0.217	0.265	0.386	0.372	0.405	0.008	ICP-MS	-	-	-
QR/108	0.070	0.076	0.083	0.131	0.120	ND	0.250	0.117	0.311	0.030	ICP-MS	-	-	-
QR/109	0.254	0.283	0.222	0.348	0.341	0.346	0.492	0.561	0.537	0.050	ICP-MS	0.410	-	-
QR/110	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.250	ICP-MS	0.393	-	1.090
QR/111	0.152	0.169	0.183	0.249	0.415	0.282	0.537	0.489	0.518	0.066	ICP-MS	-	-	-
QR/112	0.090	0.094	0.093	0.189	0.186	0.190	0.408	0.414	0.402	0.050	ICP-MS	-	-	-
QR/113	0.140	0.130	0.130	0.261	0.268	0.265	0.525	0.487	0.535	0.100	ICP-MS	-	-	-
QR/114	0.114	0.100	0.108	0.203	0.183	0.183	0.388	0.403	0.375	0.070	ICP-MS	-	-	-
QR/115	0.118	0.115	0.120	0.207	0.247	0.242	0.455	0.488	0.490	0.010	ICP-MS	-	-	1.011
QR/116	0.154	0.144	0.138	0.223	0.241	0.235	0.452	0.449	0.435	0.033	ICP-MS	-	-	-
QR/117	0.100	0.100	0.119	0.218	0.214	0.213	0.428	0.412	0.415	0.003	ICP-MS	-	-	1.012
QR/118	0.120	0.103	0.117	0.191	0.230	0.215	0.442	0.444	0.450	0.003	ICP-MS	-	-	-
QR/119	1.185	1.175	0.923	1.220	1.112	1.028	1.209	1.315	1.390	0.095	AAS	-	-	-
QR/120	0.104	0.119	0.099	0.189	0.199	0.215	0.446	0.377	0.416	0.050	ICP-MS	0.419	463	1.007
QR/121	0.113	0.100	0.194	0.209	0.203	0.194	0.433	0.443	0.439	0.048	ICP-MS	-	-	-