

science and policy for a healthy future

> HORIZON2020 Programme Contract No. 733032 HBM4EU

ICI REPORT Bisphenols/round 1

Bisphenols in urine

Version / date of issue	1 / 20-09-2018	
Organiser	LABoratoire d'Etudes des Résidus et des Contaminants dans les Aliments (LABERCA), UMR 1329 Oniris/INRA	
	Route de Gachet – CS 50707	
	F-44307 NANTES Cedex 3	
Coordinator	Vincent Vaccher; vincent.vaccher@oniris-nantes.fr	
Author(s) (Short name	Vincent Vaccher (LABERCA, Oniris/INRA),	
of institute)	Jean-Philippe Antignac (LABERCA, Oniris/INRA)	
	Philippe Marchand (LABERCA, Oniris/INRA)	
	Bruno Le Bizec (LABERCA, Oniris/INRA)	
Approved by:	<name (affiliation)="" qau="" representative=""></name>	

Table of contents

Т	able of	contents2
1	Sur	nmary3
2	Intro	oduction5
	2.1	Confidentiality
3	Cor	ntrol material6
	3.1	Preparation of control material6
	3.2	Homogeneity of control material6
	3.3	Stability of control material7
4	Org	anisational details8
	4.1	Participants
	4.2	Dispatch and instructions
5	Dat	a evaluation9
	5.1	False negatives and false positives9
	5.2	Assigned value9
	5.3	Target standard deviation9
	5.4	ICI / EQUAS standard deviation9
	5.5	Z-scores9
6	Res	sults and discussion
	6.1	Results submitted by participants11
	6.2	Assigned values and (target) standard deviations11
	6.3	Assessment of laboratory performance11
	6.4	Conclusions and recommendations12
7	Ref	erences

Appendix 2. Homogeneity data	15
Appendix 3. Stability data	24
Appendix 4. Copy of letter of invitation	28
Appendix 5. Copy of letter/instructions sent together with test samples	30
Appendix 6. GC-MS/MS method LABERCA	31
Appendix 7. Assigned values and participant's performance	32
Appendix 8. Summary of participant's score	37
Appendix 9. Graphical representation of the Z'i-scores, the Z'-scores and the Z-scores	38
Appendix 10. Youden Plot – Z-scores associated to the medium level samples (a and b)	40
Appendix 11. Summary of participant's LOQ	41
Appendix 12. Details of analysis methods used by the participants	42

1 Summary

Within the framework of the HBM4EU project, an Inter-Laboratory Comparison Investigation (ICI) was organized and conducted for the analysis of Bisphenol A (BPA), Bisphenol S (BPS) and Bisphenol F (BPF) in human urine. The study was conducted from June 2018 to July 2018.

In total, 24 laboratories from 16 countries participated in this ICI. The participation in the ICI was satisfactory, as 24 out of 24 laboratories submitted their results.

Five different test samples consisting of 10 mL urine each were prepared, corresponding to different concentration levels of the targeted biomarkers (incurred and fortified), and sent to the participating laboratories for analysis. These samples were defined as follows:

- 1 sample at very low level (VL), corresponding to a non-fortified pool of individual human urine samples for which the concentration of the targeted markers were expected to be below or as close as possible to expected instrumental detection limits,

- 1 sample at low level (L), corresponding to an incurred pool of individual human urine samples for which the concentration of the targeted markers were expected to be near the p25 of the concentration distribution of a European general population,

- 2 samples (blind replicates) at medium level (Ma and Mb), corresponding to a fortified pool of individual human urine samples for which the concentration of the targeted markers were expected to be near the p50 value of a European general population,

- 1 samples at high level (H), corresponding to a fortified pool of individual human urine samples for which the concentration of the targeted markers were expected to be near the p95 value of a European general population.

Homogeneity and stability assessment of the control materials confirmed that the medium and high concentration levels samples were adequately homogeneous and stable for BPA, BPS and BPF. Stability results for low concentration level were not found all satisfying; it has been taken into account in the score calculations. As expected, the concentrations determined by the organizer for the very low concentration level sample did not permit to correctly assess the homogeneity and the stability of this material.

Laboratory results were rated using z-scores in accordance with ISO 13528 and ISO 17043. The default standard deviation applied for proficiency assessment (i.e. target standard deviation) was set to FFP = 25 %, as described in 5.3.

Assessment scores were calculated for BPA and BPS for low, medium and high level samples. As a global overview, the proportion of satisfying results (-2 < Z-score < 2) was from 76% to 88% for BPA and from 68% to 76% for BPS.

The calculation of the score was not achievable for BPF because of unacceptable high variability of the concentrations as well as the limited number of laboratories involved in the reporting of the results. As expected, scores associated to the very low concentration level sample (VL) were not

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 4
Bisphenols in urine round 1			

calculated due to the high number of non quantified samples ("<LOQ") and to the high variability between laboratories.

The results of the blinded replicate analysis, assessed on two identical medium level samples (a and b) globally demonstrated a satisfying repeatability except for 4 and 2 participating laboratories for BPA and BPS respectively (see Youden plot in Appendix 10).

2 Introduction

Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS) are efficient tools to assess the proficiency of laboratories, and the comparability and reliability of the analytical methods used. Participation in ICI/EQUAS is full part of Laboratory Quality Assurance system together with initial and on-going in-house method validation.

This ICI study was organised within the frame of HBM4EU as part of the Quality Assurance program for biomonitoring analyses. Within HBM4EU, participation in ICI/EQUAS exercises is mandatory for laboratories that will be further involved in the analytical characterization of the HBM4EU samples.

This report describes the 1st round for Bisphenols in urine and was organised by the LABoratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), a Research Laboratory located in Nantes (France) and affiliated both to Oniris (Nantes-Atlantic National College of Veterinary Medecine, Food Science and Engineering) and to INRA (French National Institute for Agricultural Research).

Bisphenols A, S and F were included in the scope of this ICI. Concentration levels were decided so that to assessing the laboratory performances at different concentration levels. Two samples amongst the five were strictly identical (medium level). Thus, it permitted to assess the accuracy and the repeatability of the laboratories.

2.1 Confidentiality

In this report the identity of the participants and the information provided by them is treated as confidential. However, lab codes of the participants will be disclosed to the HBM-QAU for performance assessments.

3 Control material

3.1 Preparation of control material

First, several litres of human urine were collected from several volunteers individuals at different times of the day (morning, afternoon, evening). These samples were split into four different pools that were then separately filtered in a 2 L Erlenmeyer flask using a vacuum pump and pre-washed pleated filters. The filtered urine pools were transferred to a 4 L glass bottle, placed under magnetic stirring for at least 30 min and then analysed to determine the concentration levels of each target biomarker.

Two pools were directly used to prepare very low level (VL) and low level (L) samples. Ten millilitres aliquots were distributed into 15 mL tubes immediately closed with a suitable cap (polypropylene, Falcon). The concentration of the targeted markers were expected to be below or as close as possible to expected instrumental detection limits for VL sample, and to be near the p25 of the concentration distribution of a European general population for L sample.

Two other pools were fortified with glucuronide-BPA, glucuronide-BPS and glucuronide-BPF at two different expected concentration levels for coming close to the p50 and p95 values typically expected for European general population. They were identified as medium (M) and high (H) concentration levels, respectively. After being agitated 30 min on a magnetic stir, 10-mL of the two spiked materials were introduced in 15 mL tubes equipped with suitable caps (polypropylene, Falcon). For medium level material, the two tubes were filled as it was sent in duplicate.

The tubes were stored in the freezer (\leq -18 °C) until transportation. The four different concentrations (VL, L, M, H) were measured by GC-MS/MS (see analysis method in Appendix 6).

3.2 Homogeneity of control material

Ten tubes of each concentration of the control material (VL, L, M, H) were randomly selected from the freezer (≤ -18 °C). The thawed samples were re-homogenised by vortex shaking and analysed in duplicate using GC-MS/MS (analysis method see Appendix 6). The homogeneity was evaluated according to HBM4EU-SOP-QA-002 "Preparation of control materials for Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS)", ISO 13528:2015, Fearn et al [2001] and Thompson [2000]. The full data are presented in Appendix 2.

The results are summarized in the table 1 below.

		HOMOGENEITY CRITERIA				
	Concentration Level	s₅ < 0.3*σH	s _w < 0.5*σ _H	Outliers ?		
	Low Level (L)	ACCEPT	ACCEPT	NO		
BPA	Medium Level (M)	ACCEPT	ACCEPT	NO		
	High Level (H)	ACCEPT	ACCEPT	NO		
	Low Level (L)	ACCEPT	NOT ACCEPTED	YES		
BPS	Medium Level (M)	ACCEPT	ACCEPT	YES		
	High Level (H)	ACCEPT	ACCEPT	NO		
	Low Level (L)	ACCEPT	ACCEPT	NO		
BPF	Medium Level (M)	ACCEPT	ACCEPT	NO		
	High Level (H)	ACCEPT	ACCEPT	NO		

Table 1: conclusions associated to the homogeneity test

As expected, the concentrations determined by the organizer for the very low concentration level sample did not permit to correctly assess the homogeneity and the stability of this material.

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 7
Bisphenols in urine round 1			

Homogeneity assessment of the control materials confirmed that the medium and high concentration levels samples were adequately homogeneous and stable for BPA, BPS and BPF.

Note: Due to a technical reason, a batch of analyses did not meet the required quality control criteria for being included in the calculation of homogeneity results for BPS at L and M level. Nevertheless, based on the satisfactory results obtained for BPS in H sample and for BPA, BPF in L and M samples, by extrapolation the materials L and M were considered homogeneous for BPS.

3.3 Stability of control material

In accordance with HBM4EU-SOP-QA-002 "Preparation of control materials for Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS)" and with ISO 13528:2015, three randomly selected test samples from each concentration (VL, L, M, H) were analysed in duplicate by GC-MS/MS (see analysis method in Appendix 6). The randomly selected control materials were stored at \leq -18 °C.

The stability was evaluated using the Excel-sheet "HBM4EU ICI-EQUAS stability test CM v1". The results are presented in Appendix 3. The conclusions are summarized in table 2. Non satisfying stability results were observed for VL (as expected) and L samples. Indeed, at very low (VL) and low (L) concentration levels, the stability criteria were not met. This factor was included in the score calculation as foreseen in the procedure.

		STABILITY CRITERIA			
	Concentration Level	X-Y < 0.3*σH Fit-for-purpose (25%)	Fischer's test		
	Low Level (L)	NOT ACCEPTED	NOT ACCEPTED		
BPA	Medium Level (M)	ACCEPT	ACCEPT		
	High Level (H)	ACCEPT	ACCEPT		
	Low Level (L)	NOT ACCEPTED	ACCEPT		
BPS	Medium Level (M)	ACCEPT	ACCEPT		
	High Level (H)	ACCEPT	ACCEPT		
	Low Level (L)	NOT ACCEPTED	NOT ACCEPTED		
BPF	Medium Level (M)	ACCEPT	ACCEPT		
	High Level (H)	ACCEPT	ACCEPT		

Table 2: conclusions associated to the stability test

As expected, the concentrations determined by the organizer for the very low concentration level sample did not permit to correctly assess the stability of this material. Stability results for low concentration level were not found all satisfying, in that case this observation has been taken into account in the score calculations. Stability assessment of the control materials confirmed that the medium and high concentration levels samples were adequately stable for BPA, BPS and BPF.

4 Organisational details

4.1 Participants

A list of 33 candidate laboratories from different countries previously identified as potential candidates for the analysis of Bisphenols had been compiled by the Work Package (WP) Task 9.2 leaders and made available to the institution organizing the respective ICI.

Invitation letters were sent by e-mail to all those 33 candidate laboratories on 28th March 2018 (see Appendix 4), indicating that participation would be free of charge.

Twenty-four laboratories from 16 countries indicated their interest in participating in this ICI and sent their registration form to LABERCA, with their agreement to abide by the conditions for participation. These laboratories received an individual laboratory code to report their measurement results.

The deadline to submit the test results was initially fixed to 29th June 2018 but was further extended to 20th July 2018. Of the 24 participants, 24 performed the assays and submitted results. The names of the participating laboratories are available in Appendix 1.

4.2 Dispatch and instructions

Five test materials consisting of 10 mL urine tube each were shipped to participants under frozen conditions (package shipping from LABERCA, 5th June 2018).

The characteristics of the five test samples are described in the section 3.1.

Moreover, a letter with instructions related to sample handling (instruction letter, see Appendix 5), an acknowledgment of receipt, as well as a result submission/method information form were sent to the participants by e-mail the 5th June 2018. Information related to the analytical method used for quantification was compiled in Appendix 6. Participants were asked to perform for each sample a single analysis using the same procedure they will routinely use in HMB4EU. Participants were asked to report results according to the instructions given.

5 Data evaluation

5.1 False negatives and false positives

Classification of results as false negatives or false positives was done as described in HBM4EU-SOP-QA-003.

A result was assigned as false negative when the following conditions all apply:

1) the biomarker was present in the control material (as established during the homogeneity/ stability assessment) and reported by the majority of the participants.

2) the biomarker was measured by the participant, but reported as below the specified LOQ value.

3) the participant's LOQ for the biomarker was below [assigned value - 3*target standard deviation].

A result was assigned as false positive when the following conditions all apply:

1) the biomarker was not present in the control material, i.e. below the LOQ value as used by the organiser during the homogeneity/ stability assessment, and not reported by the majority of the participants.

2) the biomarker was reported by the participant.

5.2 Assigned value

For ICI studies, the consensus value is used as assigned value and calculated as described in SOP HBM4EU-SOP-QA-003. In brief, the consensus values and its uncertainty were calculated from the results submitted by the participants using robust statistics to minimize the influence of outliers.

5.3 Target standard deviation

For calculation of the Z-scores, Fit-for-purpose (FFP = 25 %) target standard deviation was used as a default value for this first round, in lack of prior information on interlaboratory performance within the HBM4EU laboratories.

5.4 ICI / EQUAS standard deviation

To gain insight in the actual variability of the biomarker analysis in this study, the robust relative standard deviation was calculated as described in HBM4EU-SOP-QA-003.

5.5 Z-scores

Z-scores were calculated according to SOP HBM4EU-SOP-QA-003.

In accordance with ISO 13528 and ISO 17043 and the deliverable D 9.4 "*The Quality Assurance/Quality Control Scheme in the HBM4EU project*, Z-scores are classified as presented in Table 3.

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 10
Bisphenols in urine round 1			

Table 3: Classification of Z-scores

$ Z \leq 2$	Satisfactory
2 < Z < 3	Questionable
$ Z \ge 3$	Unsatisfactory

6 Results and discussion

6.1 Results submitted by participants

In total 24 laboratories from 16 countries agreed to participate in this study (see Appendix 1); all participants submitted results.

Laboratories were also asked to provide LOQs and details on the method used for analysis. This information is compiled in appendix 11 and 12. An overview of results submitted by the participants is included in appendix 7.

More precisely, and with regard to the total set of five test materials to be analysed, all the 24 participants reported results for BPA, while 19 and 21 reported results for BPS and BPF, respectively.

The LOQs were generally in the range 0.05-0.5 ng/mL, for few laboratories higher (see appendix 11). For the test materials of this ICI these LOQs were found adequate in most cases.

False positives: two false positives were reported in this ICI. Participant n°4 and n°4 reported quantitative results (14.16 and 19.60 ng/mL) for BPA in VL sample, while these biomarkers were not quantified by any of the other participants.

6.2 Assigned values and (target) standard deviations

The assigned value and its uncertainty, the relative standard deviation as derived from the participant's data, and the fit-for-purpose (FFP) target standard deviation for each of the analytes/control materials are included in appendix 7.

The robust relative standard deviation was calculated as described in HBM4EU-SOP-QA-003 and was compared to the FFP target standard deviation, in order to evaluate whether the FFP fitted well with the variability actually observed. All these observations are presented in the appendix 7.

6.3 Assessment of laboratory performance

Z-scores calculated for all target biomarkers and analysed sample are reported in appendix 7. Graphical representations of the Z-scores are provided in appendix 9. A summary of number of laboratories that reported results and the number of acceptable/questionable/unacceptable scores are presented in tables 4, 5 and 6.

	ВРА				
	Low Level	Medium Level A	Medium Level B	High Level	
Nb of reported quantitative results	21	23	23	24	
Nb of reported <loq< td=""><td>3</td><td>1</td><td>1</td><td>0</td></loq<>	3	1	1	0	
Nb of acceptable score	16	19	18	21	
Nb of questionnable score	0	0	1	1	
Nb of unacceptable score	5	4	4	2	

Table	4:	Summary	of	ICI	results	for I	BPA
-------	----	---------	----	-----	---------	-------	-----

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 12
Bisphenols in urine round 1			

	BPS							
	Low Level	Medium Level A	Medium Level B	High Level				
Nb of reported quantitative results	16	16	17	19				
Nb of reported <loq< td=""><td>3</td><td>3</td><td>2</td><td>0</td></loq<>	3	3	2	0				
Nb of acceptable score	11	11	13	13				
Nb of questionnable score	1	3	2	1				
Nb of unacceptable score	4	2	2	5				

Table 5: Summary of ICI results for BPS

Table 6: Summary of ICI results for BPF

		BI	PF	
	Low Level	Medium Level A	Medium Level B	High Level
Nb of reported quantitative results	12	15	14	17
Nb of reported <loq< td=""><td>9</td><td>6</td><td>7</td><td>4</td></loq<>	9	6	7	4
Nb of acceptable score				
Nb of questionnable score		No calcula	ted scores	
Nb of unacceptable score				

Assessment scores were calculated for BPA and BPS for low, medium and high level samples. As a global overview, the proportion of satisfying results (-2 < Z-score < 2) was from 76% to 88% for BPA and from 68% to 76% for BPS.

The calculation of the score was not achievable for BPF because of unacceptable high variability of the concentrations as well as the limited number of laboratories involved in the reporting of the results. As expected, scores associated to the very low concentration level sample (VL) were not calculated due to the high number of non quantified samples ("<LOQ") and to the high variability between laboratories.

The results of the blinded replicate analysis, assessed on two identical medium level samples (a and b) globally demonstrate a satisfying repeatability except for 4 and 2 participating laboratories for BPA and BPS respectively (see Youden plot in Appendix 10).

The summary of participant's scores are included in the Appendix 8.

6.4 Conclusions and recommendations

The participation was 24 out of 33 candidate labs. Twenty-four laboratories out of 24 registered candidate laboratories reported results, representing a participation rate of 100%.

For BPA, between 76% and 88% of satisfactory results were observed whereas for BPS, the satisfaction score ranged between 68% and 76%. Unsurprisingly the percentage of satisfactory results increases with the concentration level. Globally, these results indicate the reality of a quite significant core network of competent laboratories for BPA and BPS, but a still limited number of competent labs for BPF.

The presence of a relatively high variability in the observed results (in particular some overestimated values delivered by some labs, probably in relation with external contamination issue), together with

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 13
Bisphenols in urine round 1			

a non-satisfying repeatability for few labs, reveals the need for further discussions between HBM4EU partners regarding analytical methods and QA precautions. Critical issues such as external contamination (control and reporting) as well as internal calibration options for quantification merit to be deeply discussed in view of harmonization between collaborating laboratories.

7 References

HBM4EU-SOP-QA-001 "Organisation of Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS) of interlaboratory studies"

HBM4EU-SOP-QA-002 "Preparation of control materials for Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS)"

HBM4EU-SOP-QA-003 "Evaluation of results from Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS)"

HBM4EU-SOP-QA-004 "Reporting of results of Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS)"

ISO/IEC 17043:2010, Conformity assessment – General requirements for proficiency testing

ISO 13528, 2015, Statistical methods for use in proficiency testing by interlaboratory comparison.

Thompson, M., 2000, Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing, Analyst, 125, 385-386.

Thompson M., Ellison R. and Wood, R., 2006, The International Harmonized Protocol for the Proficiency Testing of Analytical Chemistry Laboratories, Pure Appl. Chem, 78(1), 145-196.

Analytical Methods Committee, 1989a, Robust statistics - How not to reject outliers Part 1. Basic concepts, Analyst, 114, 1693-1697.

Analytical Methods Committee, 1989b, Robust statistics - How not to reject outliers Part 2. Interlaboratory trials, Analyst, 114, 1699-1702.

Official Methods of Analysis Program Manual, 2002, Appendix D: Guidelines for Collaborative Study Procedures To Validate Characteristics of a Method of Analysis. Association Of Analytical Communities International. <u>http://www.aoac.org/vmeth/Manual_Part_6.pdf</u>.

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 15
Bisphenols in urine round 1			

Appendix 2. Homogeneity data

Homogene Version HBM4EU v1	eity								
Control material:		Uri	ne	Ta	arget standa	rd deviatio	on: 25	(25% is dofaul	t value)
Analyte:		BF	PA	if th	you want to ι en delete FF	use Horwitz	ZJ /Thompson H5	(25 % is delau n,	i value)
Preparation of con 10 randomly chose	trol material: en test samples,	LOW I analysed in duplica	L EVEL						
 ISO 13528:200 Fearn, T. and N Thompson M., relation to fitnes 	5 /I. Thompson, 20 2000, Recent tre s for purpose cri	01, A New Test for nds in inter-laborato teria in proficiency t	Sufficient homogene bry precision at ppb a sesting, Analyst, 125	eity', Analys and sub-ppt i, 385-386	t, 126, 1414- o concentratic	1417 ons in			
	replicate 1	replicate 2	X	t	Wt	W_t^2 ($(\mathbf{x}_t - \overline{\mathbf{x}})^2$	•	
	0.623	0.647		0.6	0.0	0.0	0.0	-	
:	2 0.563	0.698		0.6	-0.1	0.0	0.0		
:	3 0.635	0.672		0.7	0.0	0.0	0.0		
	+ 0.726 5 0.671	0.626		0.7	0.1	0.0	0.0		
	6 0.683	0.619		0.7	0.0	0.0	0.0		
	7 0.680	0.631		0.7	0.0	0.0	0.0		
	8 0.677	0.669		0.7	0.0	0.0	0.0		
1	9 0.660	0.681		0.7	0.0	0.0	0.0		
	0 0.034	0.001		0.7	0.0	0.0	0.0		
Lowest:		0	.6 µg/kg		Σ=	0.0	0.0		
Highest		0	.7 µg/kg						
Grand mean (\bar{x}) :		0.6	6 μg/kg						
Stdev:		0.0 5.3	3 µg/kg % µg/kg						
								-	
	Outliers: Coch	nran's test							
	$C = w^2_{max} / \Sigma w_t^2$								
	> C =	0.474							
	> Ccrit=	0.602	C	$<$ Ccrit \rightarrow	No outliers o	detected			
	Horwitz [2]:								
	Mean > 120 pr	b: CV=2(1-1/2 log c)		ь <i>л</i>	ean < 120 pr	nh. α = 0.20	'C	FFP (fit-for-pur	nose)
	μησατ 2 τ20 μμ	$-2(1^{-72}\log 6)$		IVI					
	RSD%=	48.23		R	SD%=	22		RSD%=	25
	<i>σ</i> _{<i>H</i>} =	0.32		σ	н =	0.14		$\sigma_H =$	0.16
	σ_H used:	0.14							
	Homogeniteit	[1]:]	
	s _x =	0.02							
	s _w =	0.04	(within sample sta	andard devia	ation)				
	s _s =	0.00	(between sample	standard de	eviation)				
	critical=	0.04							
	$s_s < critical?$	→ ACCEPT: Hom	ogeneity adequat	e					
	s _w < 0.5*σ _H ?	\rightarrow ACCEPT: Met	hod suited						

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 16
Bisphenols in urine round 1			

Homogene	itv									
Version HBM4EU v1	it y									
Control material:		Urir	ie	Target standard deviation:						
Analyte:		BP	S	if you want to use Horwitz/Thompson,						
Preparation of cont 10 randomly chose	rol material: n test samples,	LOW L analysed in duplicat	EVEL e	une)			
 ISO 13528:2009 Fearn, T. and M Thompson M., <i>i</i> relation to fitnes 	5 I. Thompson, 20 2000, Recent tre s for purpose cri	01, A New Test for 'S ands in inter-laborator teria in proficiency te	Sufficient homogeneit y precision at ppb ar ssting, Analyst, 125,	y', Analyst nd sub-ppb 385-386	, 126, 1414-1 concentratio	417 ns in				
	replicate 1	replicate 2	x _t		W _t	w_t^2 (X _t	$-\overline{x})^2$	-		
	0.152 2 0.116 3 0.093 4 0.140	0.212 0.157 0.295		0.2 0.1 0.2	-0.1 -0.1 -0.2	0.0 0.0 0.0	0.0 0.0 0.0			
	0.144 0.151 0.151	0.267		0.2	-0.1	0.0	0.0			
10	0.131 0.121 0.133	0.550		0.3	-0.4	0.2	0.0			
Lowest: Highest Grand mean (x̄): Stdev: VC%:		0.1 0.5 0.19 0.12 61.4%	1 µg/kg 5 µg/kg 9 µg/kg 2 µg/kg 6 µg/kg		Σ=	0.2	0.0			
	Outliers: Cocl	nran's test						1		
	$C = w^2_{max} / \Sigma w_t^2$									
	> C = > Ccrit=	0.778 0.638	C >	\cdot Ccrit \rightarrow C	Outliers dete	cted				
	Horwitz [3]:									
	Mean > 120 pp	ob: CV=2(1-½ log c)		Me	ean < 120 pp	b: σ = 0,22c		FFP (fit-for-purp	oose)	
	RSD%=	58.03		RS	SD% =	22		RSD%=	25	
	$\sigma_{\rm H}$ used:	0.04		0 F	4 =	0.04		0 H =	0.05	
	Homogeniteit	[1]:						ן		
	s _x =	0.06								
	s _w =	0.11	(within sample star	idard deviat	tion)					
	s _s =	0.00	(between sample s	tandard dev	viation)					
	critical=	0.01								
	$s_s < critical?$	\rightarrow ACCEPT: Home	ogeneity adequate							
	$s_w < 0.5^* \sigma_H?$	→ NOT ACCEPTE	D: Method not suite	d						

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 17
Bisphenols in urine round 1			

Homogene Version HBM4EU v1	ity										
Control material:		ι	Irine		Ta	rget sta	andar	d deviation	:		
Analyte:			BPF		Fit-for-purpose RSD 25 (25% is default value) if you want to use Horwitz/Thompson,						ult value)
Preparation of cont	rol material:	LOW	LEVEL		lite		errr		J		
	ti test samples,	anaryseu in dupi	cale								
 [2] Fearn, T. and M [3] Thompson M., 2 relation to fitness 	2000, Recent tre s for purpose cri	01, A New Test fo ends in inter-labora teria in proficiency	or 'Sufficient hol atory precision / testing, Analy	mogeneity' at ppb and /st, 125, 38	, Analyst, sub-ppb 85-386	126, 1 concen	414-14 tration	117 s in			
	replicate 1	replicate 2		x _t		W _t		w _t ² (X _t	$(-\overline{x})^2$	-	
1	0.060	0.056			0.1		0.0	0.0	0.0	-	
2	0.048	0.060			0.1		0.0	0.0	0.0		
4	0.063	0.055			0.1		0.0	0.0	0.0		
5	0.054	0.058			0.1		0.0	0.0	0.0		
6	0.057	0.056			0.1		0.0	0.0	0.0		
/ 8	0.058	0.055			0.1		0.0	0.0	0.0		
9	0.059	0.060			0.1		0.0	0.0	0.0		
10	0.062	0.060			0.1		0.0	0.0	0.0		
Lowest: Highest Grand mean (<i>x</i>):		(0.0 µg/kg 0.1 µg/kg 0.06 µg/kg				Σ=	0.0	0.0		
Stdev: VC%:		(5.).00 µg/kg <mark>8%</mark> µg/kg								
	Outliers: Cocl	nran's test								ו	
	$C = w_{max}^2 / \Sigma w_t^2$										
	> C = > Ccrit=	0.468 0.602		C < ($Ccrit \rightarrow N$	o outli	ers de	tected			
	Horwitz [3]:										
	Mean > 120 pp	ob: CV=2(1-1/2 log	c)		Ме	an < 12	20 ppb	: σ = 0,22c		FFP (fit-for-p	urpose)
	RSD%=	69.53			RS	D%=		22		RSD%=	25
	<i>σ</i> _{<i>H</i>} =	0.04			σ_H	=		0.01		$\sigma_H =$	0.0
	σ_H used:	0.01									
	Homogeniteit	[1]:									
	s _x =	0.00									
	s _w =	0.00	(within sar	mple stand	ard deviat	ion)					
	s _s =	0.00	(between s	sample sta	ndard dev	iation)					
	critical=	0.00									
	$s_s < critical?$	→ ACCEPT: Ho	mogeneity ad	dequate							
	-		-								

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 18
Bisphenols in urine round 1			

Homogene Version HBM4EU v1	ity										
Control material:		ι	Jrine		Ta	rget sta	andar	d deviatior	n:		
Analyte:			BPA		Fit- if y	-for-purp ou wan	t to us	SD e Horwitz/T from coll H	25 hompso	(25% is defa n,	ult value)
Preparation of cont	rol material:	MEDIU	JM LEVEL		the	in delet	еггр		S		
10 randomly chose	en test samples,	analysed in dupli	cate								
 ISO 13528:2004 Fearn, T. and M Thompson M., 3 relation to fitnes 	5 1. Thompson, 20 2000, Recent tre s for purpose cri	01, A New Test fo nds in inter-labora teria in proficiency	or 'Sufficient ho atory precision / testing, Analy	mogeneity' at ppb and /st, 125, 38	, Analyst, sub-ppb 35-386	126, 1 concen	414-14 tration	17 s in			
	replicate 1	replicate 2		x _t		Wt		w _t ² (x	$(t-\overline{x})^2$	-	
	2.213	2.076			2.1		0.1	0.0	0.0	Ī	
1	2 2.196 3 2.100	2.043			2.1 2.1		0.2 0.0	0.0 0.0	0.0		
1	1 1.871	2.002			1.9		-0.1	0.0	0.0		
ŧ	2.036	1.905			2.0		0.1	0.0	0.0)	
6	6 1.851	1.803			1.8		0.0	0.0	0.0		
5	1.947	1.911			1.9		-0.1	0.0	0.0		
ç	1.885	2.128			2.0		-0.2	0.0	0.0		
10	1.974	1.807			1.9		0.2	0.0	0.0	1	
Lowest: Highest Grand mean (\vec{x}) : Stdev: VC%:		, (1.8 µg/kg 2.2 µg/kg 1.99 µg/kg 0.12 µg/kg 1% µg/kg				Σ=	0.2	0.1		
		we wile to et								-	
	Outliers. Coci	iran s lesi									
	$C = W^2_{max} / \Sigma W_t^2$										
	> C =	0.332									
	> Ccrit=	0.602		C < (Ccrit → N	o outli	ers de	tected]	
	Horwitz [3]:										
	Mean > 120 pp	b: CV=2(1-½ log	c)		Ме	an < 12	20 ppb	: σ = 0,22c		FFP (fit-for-p	urpose)
	RSD%=	40.81			RS	D%=		22		RSD%=	25
	$\sigma_H =$	0.81			σ_H	=		0.44		σ _H =	0.5
1	OH USEC:	0.44									
	Homogeniteit	[1]:]	
	s _x =	0.10									
	s _w =	0.09	(within sar	mple stand	ard deviat	ion)					
	s _s =	0.08	(between s	sample sta	ndard dev	iation)					
	critical=	0.13									
	$s_{s} < critical?$	→ ACCEPT: Ho	mogeneity a	dequate							

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 19
Bisphenols in urine round 1			

	-									
Homogene	eity									
Version HBIVI4EU V1										
Control material:		Uri	ne		Targe Fit-fo	et standar r-purpose F	d deviation:	25	(25% is default	value)
Analyte:		BI	PS		if you then	want to us	e Horwitz/Th from cell H5	iompsor	1,	(ardo)
Preparation of con	trol material:	MEDIUN	I LEVEL							
10 randomly chose	en test samples,	analysed in duplica	ate							
 ISO 13528:200 Fearn, T. and M Thompson M., relation to fitnes 	5 //. Thompson, 20 2000, Recent tre ss for purpose cri	01, A New Test for nds in inter-laborate teria in proficiency f	Sufficient homo ory precision at testing, Analyst	geneity', , ppb and s , 125, 385	Analyst, 1: ub-ppb co -386	26, 1414-14 ncentratior	417 ns in			
	replicate 1	replicate 2		x _t		Wt	w _t ² (X _t	$-\overline{\mathbf{x}})^2$		
	1	0.962								
	2 0.761 3 0.574 4 0.681 5 0.573 6 0.843 7 0.733 8 0.809 9 0.819	0.845			0.8	-0.2	0.0	0.0		
1 Lowest: Highest Grand mean (x): Stdev: VC%:	0	0 1 0. 0. 16.3	.6 µg/kg .0 µg/kg 76 µg/kg 12 µg/kg % µg/kg			Σ=	0.0	0.0		
	Quitiers: Cool	ranla to at							l	
	Outliers: Coci	iran's test								
	$C = w^2_{max} / \Sigma w_t^2$									
	> C =	1.000								
	> Ccrit=	0.679		C > C	rit → Out	liers dete	cted			
	Horwitz [3]:									
	Mean > 120 pp	ob: CV=2(1-1/2 log c)	I		Mean	< 120 ppt	c σ = 0,22c		FFP (fit-for-pur	oose)
	RSD%=	47.16			RSD	%=	22		RSD%=	25
	σ _H =	0.36			$\sigma_H =$		0.17		$\sigma_H =$	0.19
	σ_H used:	0.17								
	Homogeniteit	[1]:								
	s _x =	0.00								
	s _w =	0.04	(within samp	le standar	d deviatior	ı)				
	s _s =	0.00	(between sar	nple stan	dard deviat	ion)				
	critical=	0.05								
	s _s < critical?	\rightarrow ACCEPT: Hon	nogeneity ade	quate						
	s _w < 0.5*σ _H ?	\rightarrow ACCEPT: Met	hod suited							

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 20
Bisphenols in urine round 1			

Homogene	ity										
Version HBM4EU v1	-										
Control material:		l	Jrine		Та	rget sta	Indaro	d deviatio	n:		
Analyte:			BPF		Fit-for-purpose RSD 25 if you want to use Horwitz/Thomps					(25% is defa າ,	ult value)
Preparation of cont	rol material:	MEDIU	JM LEVEL		the		5115		10		
10 randomly chose	n test samples,	analysed in dupli	cate								
 ISO 13528:2005 Fearn, T. and M Thompson M., 2 relation to fitnes 	5 I. Thompson, 20 2000, Recent tre s for purpose cri	01, A New Test fo nds in inter-labora teria in proficienc	or 'Sufficient hor atory precision y testing, Analy	mogeneity' at ppb and /st, 125, 38	, Analyst, sub-ppb 35-386	126, 14 concen	414-14 tration	17 s in			
	replicate 1	replicate 2		x _t		W _t		w _t ² (x	$(t - \overline{\mathbf{X}})^2$		
1	0.432	0.487			0.5		-0.1	0.0	0.0	-	
2	0.448	0.422			0.4 0.4		0.0	0.0 0.0	0.0 0.0		
4	0.414	0.448			0.4		0.0	0.0	0.0		
5	0.433	0.418			0.4		0.0	0.0	0.0		
6	0.392	0.463			0.4		-0.1	0.0	0.0		
<i>۱</i> ج	0.401	0.431			0.4		0.0	0.0	0.0		
g	0.414	0.417			0.4		0.0	0.0	0.0		
10	0.407	0.449			0.4		0.0	0.0	0.0		
Lowest: Highest Grand mean (x): Stdev: VC%:		((5	0.4 µg/kg 0.5 µg/kg 0.43 µg/kg 0.02 µg/kg .3% µg/kg				Σ=	0.0	0.0		
										ı	
	Outliers: Coci	hran's test									
	$C = w^2_{max} / \Sigma w_t^2$										
	> C = > Ccrit=	0.391 0.602		C < (Ccrit \rightarrow N	o outli	ers de	tected			
										•	
	Horwitz [3]:										
	Mean > 120 pp	b: CV=2(1-1/2 log	c)		Me	an < 12	20 ppb	: σ = 0,22c		FFP (fit-for-p	ourpose)
	RSD%=	51.43			RS	D%=		22		RSD%=	25
	σ _H =	0.22			σ _H	=		0.09		$\sigma_H =$	0.1
	σ_H used:	0.09									
	Homogeniteit	[1]:									
	s _x =	0.01									
	s _w =	0.03	(within san	nple stand	ard deviat	ion)					
	s _s =	0.00	(between s	sample sta	ndard dev	iation)					
	critical=	0.03									
	$s_{o} < critical?$	→ ACCEPT: Ho	omogeneity ac	dequate							
	o's controlait										

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 21
Bisphenols in urine round 1			

Homogene Version HBM4EU v1	ity										
Control material:		U	rine		Та	rget standa	rd deviatio	n:			
Analyte:		E	BPA		if you want to use Horwitz/Thompson, then delete FFP from cell H5						
Preparation of cont	rol material:	HIGH	I LEVEL		une			5			
10 randomly chose	n test samples,	analysed in duplic	cate								
 ISO 13528:2005 Fearn, T. and M Thompson M., 2 relation to fitnes: 	5 I. Thompson, 20 2000, Recent tre s for purpose cri	01, A New Test fo nds in inter-labora teria in proficiency	r 'Sufficient hor tory precision a testing, Analy	nogeneity' at ppb and st, 125, 38	, Analyst, sub-ppb 85-386	126, 1414-1 concentratio	417 ns in				
	replicate 1	replicate 2		x _t		Wt	w _t ² (x	$(t - \overline{X})^2$	-		
1	5.65	6.15			5.9	-0.5	0.2	0.0	-		
2	5.83 6.26	6.31			6.1 6.2	-0.5 0.2	0.2	0.0 0.0			
4	5.57	6.32			5.9	-0.7	0.6	0.0			
5	5.69	6.17			5.9	-0.5	0.2	0.0			
6 7	6.19	6.20			6.2	0.0	0.0	0.0			
8	5.28	6.01			5.6	-0.7	0.5	0.1			
g	5.89	6.30			6.1	-0.4	0.2	0.0			
10	5.97	6.09			6.0	-0.1	0.0	0.0			
Lowest: Highest Grand mean (x): Stdev: VC%:		6 0 4.	5.3 µg/kg 6.3 µg/kg .01 µg/kg .29 µg/kg 8% µg/kg			Σ=	2.0	0.2			
									_		
	Outliers: Coch	nran's test									
	$C = w_{max}^2 / \Sigma w_t^2$										
	> C = > Ccrit=	0.277 0.638		C < (Ccrit \rightarrow N	lo outliers d	etected]		
	Horwitz [3]:										
	Mean > 120 pp	b: CV=2(1-1/2 log o	c)		Ме	an < 120 ppl	o: σ = 0,22c		FFP (fit-for-pu	irpose)	
	RSD%=	34.55			RS	SD% =	22		RSD%=	25	
	$\sigma_H =$	2.08			σ_H	=	1.32		$\sigma_H =$	1.50	
	σ_{H} used:	1.32									
	Homogeniteit	[1]:]		
	s _x =	0.17									
	s _w =	0.33	(within sam	nple stand	ard deviat	ion)					
	s _s =	0.00	(between s	ample sta	ndard dev	iation)					
	critical=	0.40									
	$s_s < critical?$	\rightarrow ACCEPT: Ho	mogeneity ad	lequate							
	s< 0.5*σµ?	→ ACCEPT: Me	thod suited								

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 22
Bisphenols in urine round 1			

Homogene	ity										
Version HBM4EU v1	•										
Control material:		L	Irine		Та	rget sta					
Analyte:			BPS		Fit- if y the	for-purp ou want	ose R to us	SD e Horwitz/Tr from cell H5	25 nompsoi	(25% is defa n,	ult value)
Preparation of cont	rol material:	HIGH	I LEVEL		the		, , , , ,		•		
10 randomly chose	en test samples,	analysed in dupli	cate								
 ISO 13528:2005 Fearn, T. and M Thompson M., 2 relation to fitnes 	5 1. Thompson, 20 2000, Recent tre s for purpose cri	01, A New Test fo nds in inter-labora teria in proficiency	r 'Sufficient hoi atory precision / testing, Analy	mogeneity' at ppb and /st, 125, 38	, Analyst, sub-ppb 35-386	126, 14 concent	14-14 ration	117 s in			
	replicate 1	replicate 2		x _t		Wt		w _t ² (X _t	$-\overline{x})^2$		
1	7.58	6.72			7.2		0.9	0.7	0.0	-	
2	2 7.19	6.67 7.50			6.9 8 1		0.5 1 3	0.3	0.0		
	4 6.21	6.79			6.5		-0.6	0.3	0.3		
5	5 7.26	5.86			6.6		1.4	2.0	0.3		
6	6 7.14 7 7 07	7.56			7.4		-0.4	0.2	0.1		
1	6.71	5.91 6.21			6.9 6.5		2.1	4.2 0.2	0.0		
ģ	7.36	7.39			7.4		0.0	0.0	0.1		
10	7.33	7.42			7.4		-0.1	0.0	0.1		
Lowest: Highest Grand mean (x̄): Stdev: VC%:		7 (10.	5.9 µg/kg 8.8 µg/kg 7.08 µg/kg 9.71 µg/kg 1% µg/kg				Σ=	9.6	2.4		
										ı	
	Outliers: Coci	hran's test									
	$C = w^2_{max} / \Sigma w_t^2$										
	> C = > Ccrit=	0.440 0.602		C < (Ccrit → N	o outlie	ers de	tected			
	Horwitz [3]:										
	Mean > 120 pp	b: CV=2(1-1/2 log	c)		Ме	an < 12	0 ppb	: σ = 0,22c		FFP (fit-for-p	urpose)
	RSD%=	33.71			RS	D%=		22		RSD%=	25
	σ _H =	2.39			σ _H	=		1.56		<i>σ</i> _{<i>H</i>} =	1.77
	σ_H used:	1.56									
	Homogeniteit	[1]:]	
	s _x =	0.52									
	s _w =	0.69	(within sar	nple stand	ard deviat	ion)					
	s _s =	0.16	(between s	sample sta	ndard dev	iation)					
	critical=	0.47									
	$s_s < critical?$	\rightarrow ACCEPT: Ho	mogeneity ac	dequate							
	$s < 0.5^* \sigma_{\rm e} 2$		thod suited								

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 23
Bisphenols in urine round 1			

Homogene	ity									
Version HBM4EU v1										
Control material:		U	Irine		Та					
Analyte:		-	BPF		Fit- if y the	-for-purpose ou want to u	RSD se Horwitz/1 2 from cell H	25 Thompso	(25% is defau n,	ult value)
Preparation of cont	rol material:	HIGH	I LEVEL							
10 randomly chose	en test samples,	analysed in dupli	cate							
 ISO 13528:2005 Fearn, T. and M Thompson M., 2 relation to fitnes. 	5 I. Thompson, 20 2000, Recent tre s for purpose cri	01, A New Test fo ends in inter-labora teria in proficiency	r 'Sufficient hor atory precision a testing, Analy	mogeneity' at ppb and st, 125, 38	, Analyst, sub-ppb 35-386	126, 1414-1 concentratio	417 ns in			
	replicate 1	replicate 2		x _t		W _t	w _t ² (X	$(t-\overline{\mathbf{X}})^2$	-	
1	0.93	1.01			1.0	-0.1	0.0	0.0		
2	1.04 3 1.07	1.04			1.0 1.1	0.0	0.0	0.0		
4	0.92	1.06			1.0	-0.1	0.0	0.0		
5	0.96	1.10			1.0	-0.1	0.0	0.0		
6	5 1.08 7	1.03			1.1	0.0	0.0	0.0		
8	0.90	1.00			1.0	-0.1	0.0	0.0		
g	1.04	1.07			1.1	0.0	0.0	0.0		
10) 1.00	1.05			1.0	-0.1	0.0	0.0		
Lowest: Highest Grand mean (x): Stdev: VC%:		1 C 5.	0.9 µg/kg 1.1 µg/kg .02 µg/kg 0.06 µg/kg 5% µg/kg			Σ=	0.1	0.0		
	(<u> </u>	-							7	
	Outliers: Coch	nran's test								
	$C = w^2_{max} / \Sigma w_t^2$									
	> C = > Ccrit=	0.310 0.638		C < (Ccrit \rightarrow N	lo outliers d	etected			
	Horwitz [3]:									
	Mean > 120 pp	b: CV=2(1-1/2 log	c)		Ме	an < 120 pp	b: σ = 0,22c		FFP (fit-for-pu	urpose)
	RSD%=	45.10			RS	SD% =	22		RSD%=	25
	σ _H =	0.46			σ_H	=	0.22		$\sigma_H =$	0.26
	σ_H used:	0.22								
	Homogeniteit	[1]:]	
	s _x =	0.04								
	s _w =	0.06	(within san	nple stand	ard deviat	ion)				
	s _s =	0.00	(between s	ample sta	ndard dev	iation)				
	critical=	0.07								
	$s_s < critical?$	\rightarrow ACCEPT: Ho	mogeneity ac	lequate						
		ACCEPT. M.	المعقلين المعطاف							

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 24
Bisphenols in urine round 1			

Appendix 3. Stability data

HBM4EU ICI-EQUAS stability test CM v1

Stability test

t in frame of I	ICI-EQUAS					
Material:	Urine Frazen condition	vc (20°C)				
otolago.	1102cm condition	13 (20 0)				
Biomarker	BPS - VERY LO	W LEVEL				
	t=0 (storage)	t=a (analysis)	analysis date t	ime (days)	µg/L n	std dev
dates:	31/05/2018	25/07/2018	31/05/2018		0 0.1	12 0.006
values:	0.054	0.057	25/07/2018		55 0.1	6 0.006
	0.055	0.071				
	0.054	0.054	x0-xa=	0.001		
	0.060	0.055				
	0.060	0.057	test 'consequential instability':	Horwitz/Thompson	Fit-for-purpose (FFP)	
	0.056	0.058	xav-yav =<0,3σH			
	0.057					
	0.057		σH=	0.013	0.015	
	0.067		0,3*oH=	0.004	0.004	
	0.060		x0-xa<0,3*oH?	No consequential instability detected	No consequential instability detected	
	0.061					
	0.074		test 'significant difference':			
			F=	1.084		
			Fcrit=	3.204		
			Significant difference?	No significant difference in std detected		
			sed^2=	0.01		
			n=	16		
			std difference=	0.00		
			t=	0.34		
			t-crit=	2.12		
number=	12	6	Significant difference?	No statistic instability detected		
average=	0.060	0.059				
std dev=	0.006	0.006				

Stability test in frame of	ICI-EQUAS								
Materia Storage	: Urine : Frozen conditions	(-20°C)							
Biomarke	r BPF - VERY LOV	/ LEVEL							
	t=0 (storage) t	=a (analysis)	analysis date	time (days)		µg/L	n	s	std dev
dates	: 31/05/2018	25/07/2018	31/05/2	018		0	0.0	18	0.003
values	0.004	0.003	25/07/2	018		55	0.0	6	0.002
	0.005	0.008							
	0.005	0.005	x0-	ka=	0.0003				
	0.005	0.005							
	0.004	0.005	test 'consequential instability	<u>':</u>	Horwitz/Thompson		Fit-for-purpose (FFP)		
	0.005	0.004	xav-yav =<0,3oH						
	0.012								
	0.004			TH=	0.0012		0.0014		
			0,3*0	JH=	0.0004		0.0004		
	0.003		x0-xa<0,3*oH?	No consequential	instability detected		No consequential instability detected		
	0.004				•				
	0.007		test 'significant difference':						
	0.005		-	F=	3.720				
	0.005		Fo	rit=	4.590				
	0.004		Significant differen	ce? No significant diff	erence in std detected				
	0.004		sec	//2=	0.00				
	0.015			n=	22				
	0.005		std differen	ce=	0.00				
				t=	0.22				
	0.004		t-c	crit=	2.07				
number	18	6	Significant differen	ce? No statistic instab	ility detected				
average	= 0.005	0.005	· · · · · ·		•				
std dev	= 0.003	0.002							

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 25
Bisphenols in urine round 1			

HBM4EU ICI-EQUAS stability test CM v1

HBM4EU ICI-EQUAS stability test CM v1

Stability test in frame of ICI-EQUAS

Matorial: Ur	ino	_								
Storage: Fro	Dzen condition:	s (-20°C)								
		. ,								
Biomarker BF	PS - LOW LEV	'EL								
t=0) (storage)	t=a (analysis)	analysis date	time (days)		μg/	Ln		s	td dev
dates:	31/05/2018	25/07/2018	31/05/2	018		0	0.2		14	0.11
values:	0.152	0.132	25/07/2	018		55	0.1		6	0.00
	0.116	0.137								
	0.093	0.127	x0-x	a=	0.059					
	0.140	0.136								
	0.144	0.132	test 'consequential instability	<u>:</u>	Horwitz/Thompson		Fit-for-purpose (FF	<u>P)</u>		
	0.151	0.130	xav-yav =<0,3σH							
	0.151									
	0.121		c	rH=	0.042			0.048		
	0.133		0,3*0	rH=	0.013			0.014		
	0.212		x0-xa<0,3*σH?	Consequential	instability detected		Consequential inst	ability detected		
	0.157									
	0.295		test 'significant difference':							
	0.267		_	F=	1037.027					
	0.550		Fc	rit=	4.655					
			Significant differen	ce? Significant dif	erence in std detected					
			sed	^2=	0.10					
				n=	18					
			std differend	ce=	0.05					
				t=	1.21					
			t-c	rit=	2.10					
number=	14	6	Significant differen	ce? No statistic ins	tability detected					
average=	0.192	0.132								
ctd dov	0 1 1 9	0.004								

Stability test in frame of IC	I-EQUAS								
Material: L	Jrine								
Storage: F	rozen conditions	s (-20°C)							
Biomarker E	BPF - LOW LEV	EL							
	=0 (storage)	t=a (analysis)	analysis date	time (days)		ua/	n	str	d dev
dates:	31/05/2018	25/07/2018	31/05	/2018			0.1	20	0.003
values:	0.060	0.06	25/07	/2018		55	0.1	6	0.003
	0.048	0.06							
	0.054	0.06	x)-xa=	-0.006				
	0.063	0.06	•						
	0.054	0.07	test 'consequential instabil	t <u>y':</u>	Horwitz/Thompson		Fit-for-purpose (FFP)		
	0.057	0.06	xav-yav =<0,3σH						
	0.058								
	0.060			σH=	0.013		0.014		
	0.059		0,	*σH=	0.004		0.004		
	0.062		x0-xa<0,3*σH?	Consequentia	al instability detected		Consequential instability detected		
	0.056								
	0.060		test 'significant difference':						
	0.060			F=	1.242				
	0.055			Fcrit=	4.568				
	0.058		Significant differ	ence? No significan	t difference in std detected				
	0.056		s	ed^2=	0.00				
	0.055			n=	24				
	0.059		std differ	ence=	0.00				
	0.060			t=	3.81				
	0.060			-crit=	2.06				
number=	20	6	Significant differ	ence? Statistic insta	bility detected				
average=	0.058	0.064							
std dev=	0.003	0.003							

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 26
Bisphenols in urine round 1			

HBM4EU ICI-EQUAS stability test CM v1

HBM4EU ICI-EQUAS stability test CM v1

Stability test in frame of ICI-EQUAS

Stability test ir	n frame of l	CI-EQUAS							
	Material: Storage:	Urine Frozen conditions	s (-20°C)						
	Biomarker	BPF - MEDIUM L	.EVEL						
		t=0 (storage) t	t=a (analysis)	analysis date	time (days)		μg/L	n	std dev
	dates:	31/05/2018	25/07/2018	31/	05/2018		0	0.4	20 0.023
	values:	0.43	0.41	25/	07/2018		55	0.5	5 0.032
		0.45	0.49						
		0.42	0.43		x0-xa=	-0.02			
		0.41	0.45						
		0.43	0.47	test 'consequential instat	pility':	Horwitz/Thompson		Fit-for-purpose (FFP)	
		0.39		xav-yav =<0,3oH	-				
		0.40		-					
		0.40			σH=	0.09		0.11	
		0.41			0,3*σH=	0.03		0.03	
		0.41		x0-xa<0,3*oH?	No consequenti	al instability detected		No consequential instability detected	
		0.49						· · ·	
		0.42		test 'significant difference	e':				
		0.43		-	F=	1.94			
		0.45			Fcrit=	2.90			
		0.42		Significant diff	ference? No significant d	ifference in std detected			
		0.46		_	sed/2=	0.02			
		0.43			n=	23			
		0.42		std diff	erence=	0.01			
		0.42			t=	1.84			
		0.45			t-crit=	2.07			
	number=	20	5	Significant diff	ference? No statistic insta	ability detected			
	average=	0.43	0.45						
	std dev=	0.023	0.032						

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 27
Bisphenols in urine round 1			

HBM4EU ICI-EQUAS stability test CM v1

Stability test in frame of ICI-EQUAS Material: Urine Storage: Frozen conditions (-20°C) Biomarker BPA - HIGH LEVEL time (days) 31/05/2018 25/07/05 t=0 (storage) t=a (analysis) 31/05/2018 25/07/2018 5.65 5.99 5.83 6.68 6.26 5.94 5.57 5.70 5.69 5.77 6.19 5.43 _____ 0 55 std dev 19 0.291 analysis date n 6.0 5.9 dates: values 25/07/2018 55 6 0.423 0.09 x0-xa= test 'consequential instability': xav-yav =<0,3oH Horwitz/Thompson Fit-for-purpose (FFP) 5.28 5.89 5.97 6.15 6.31 6.31 6.32 6.17 6.20 6.23 6.01 6.30 6.09 1.32 0.40 σH= 0,3*σH= 1.50 0.45 x0-xa<0,3*σH? No consequential instability detected No consequential instability detected test 'significant difference': F= 2.12 2.77 Fcrit= Fortt= Significant difference in sed*2= n= std difference= t= t-crit= 2.77 ected 0.32 23 0.15 0.62 2.07 number= average= std dev= 0.03 19 6.01 0.291 Significant difference? No statistic instability detected 6 5.92 0.423

HBM4EU ICI-EQUAS stability test CM v1

Stability test in frame of ICI-EQUAS

Material: **Urine** Storage: Frozen conditions (-20°C) Biomarker **BPA - HIGH LEVEL**

Biomarker	r BPA - HIGH LEV	EL						
	t=0 (storage)	t=a (analysis)	analysis date time (days)		ua/L	n	st	td dev
dates:	31/05/2018	25/07/2018	31/05/2018		0	7.1	20	0.711
values:	7.58	7.29	25/07/2018		55	7.2	6	0.104
	7.19	7.34						
	8.77	7.08	x0-xa=	-0.15				
	6.21	7.13						
	7.26	7.31	test 'consequential instability':	Horwitz/Thompson		Fit-for-purpose (FFP)		
	7.14	7.24	xav-yav =<0,3σH					
	7.97							
	6.71		σH=	1.56		1.77		
	7.36		0,3*σH=	0.47		0.53		
	7.33		x0-xa<0,3*σH? No consequential instability detected			No consequential instability detected		
	6.72							
	6.67		test 'significant difference':					
	7.50		F=	46.89				
	6.79		Fcrit=	4.57				
	5.86		Significant difference? Significant	t difference in std detected				
	7.56		sed^2=	0.63				
	5.91		n=	24				
	6.21		std difference=	0.30				
	7.39		t=	0.52				
	7.42		t-crit=	2.06				
number=	20	6	Significant difference? No statisti	c instability detected				
average=	7.08	7.23						
std deve	0 711	0 104						

Stability test in frame of	f ICI-EQUAS					
Materia Storag	al: Urine e: Frozen conditions	(-20°C)				
Biomark	er BPF - HIGH LEVE	EL				
	t=0 (storage) t=	=a (analysis)	analysis date time	(days)	µg/L n	std dev
date	s: 31/05/2018	25/07/2018	31/05/2018		0 1.0	19 0.056
value	s: 0.93	1.00	25/07/2018		55 1.0	6 0.036
	1.04	1.03				
	1.07	1.08	x0-xa=	-0.002		
	0.92	1.05				
	0.96	1.03	test 'consequential instability':	Horwitz/Thompson	Fit-for-purpose (FFP)	
	1.08	0.98	xav-yav =<0,3σH			
	0.90		σH=	0.22	0.26	
	1.04		0,3*σH=	0.07	0.08	
	1.00		x0-xa<0,3*oH? No o	consequential instability detected	No consequential instability detected	1
	1.01					
	1.04		test 'significant difference':			
	1.07		F=	2.52		
	1.06		Fcrit=	4.58		
	1.10		Significant difference? No s	significant difference in std detected		
	1.03		sed/2=	0.05		
	1.05		n=	23		
	1.00		std difference=	0.02		
	1.07		t=	0.10		
	1.05		t-crit=	2.07		
numbe	= 19	6	Significant difference? No s	statistic instability detected		
average	= 1.02	1.02				
I std dev	<i>⊨</i> 0.056	0.036				

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 28
Bisphenols in urine round 1			

Appendix 4. Copy of letter of invitation

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 29
Bisphenols in urine round 1			

science and policy for a healthy future

Calendar:	
Deadline registration	11-04-2018
Distribution of test samples (projected)	29-05-2018
Deadline for reporting the results (projected)	29-06-2018

Registration

HBM4EU

For registration, please find attached a registration form for parameter Bisphenols in urine. Please send it back to us by mail in case you want to register.

Upon registration, the participant will receive a lab-code to be used for submission of results.

Fee

For partners and linked-third parties of HBM4EU, participation is free of charge. Please note that the participant is responsible for custom clearance and associated costs if applicable.

Confidentiality:

All laboratory specific information will be treated confidentially, and will never be disclosed to third parties (government, accreditation bodies) except the HBM4EU QAU, without permission of the laboratory

Contact information organiser:

Coordinator: Vincent Vaccher

LABERCA (LABoratoire d'Etude des Résidus et des Contaminants dans les Aliments), UMR 1329 Oniris-INRA, Route de Gachet – CS50707 44307 NANTES Cedex France

Email: vincent.vaccher@oniris-nantes.fr

Tel: +33 2 40 68 78 80

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 30
Bisphenols in urine round 1			

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 31
Bisphenols in urine round 1			

Appendix 6. GC-MS/MS method LABERCA

Laboratory	LABERCA - France
ISO17025 accredited	yes
Volume of urine used to perform the analysis	2 mL
Type of deconjugation	enzymatic deconjugation
Enzyme used (ref number)	Abalonase purified enzymatic formula Bglucu (beta gluc 10)
SPE offline (yes/no)	Yes
Type of column used for SPE offline	Chromabond HR-X / Affinimip
Derivatisation agent	MSTFA
Name and version of mass spectrometer	Agilent 7010
GC-MS/MS (yes/no)	Yes
Type of column (GC or LC)	GC (Optima 17 MS)
Response normalised to IS (yes/no)	Yes
Internal standard	BPA 13C; BPS 13C; BPF 13C
Calibration type	Isotopic dilution before extraction

ICI / EQUAS report Bisphenols/round 1	Version: 1/2018	Date of issue: 20-09-2018	Page: 32
Bisphenols in urine round 1			

Appendix 7. Assigned values and participant's performance

Control material		VERY LOW LEVEL SAMPLE (VL)						
Parameter		I	BPA	I	BPS	BPF		
Number of particip	oants		24		19		21	
Number of quantit	ative results		16		9	4		
Target value estimate	ed by ICI organizer ng/mL		0.08	(0.06	0	.01	
Assigned value ng	J/mL		-		-		-	
Uncertainty of ass	igned value ng/mL		-		-		-	
Study RSD _R (%)			-		-		-	
Relative target sta	ndard deviation (%)		-		-		-	
Laboratory code	ID sample	Value	Z-score	Value	Z-score	Value	Z-score	
3	18-BPs-466	< 0.10	-	1.70	-	< 0.25	-	
4	18-BPs-104	14.16	-	3.48	-	3.41	-	
6	18-BPs-787	0.15	-	0.11	-	< 0.05	-	
17	18-BPs-581	0.09	-	0.06	-	0.003	-	
20	18-BPs-936	1.00	-	< 10	-	< 1.00	-	
25	18-BPs-293	< 1.40	-	< 0.30	-	< 2.00	-	
26	18-BPs-669	< 0.10	-	< 0.10	-	< 0.10	-	
31	18-BPs-136	< 0.10	-	< 0.40	-	< 0.20	-	
36	18-BPs-431	3.41	-	-	-	< 0.50	-	
39	18-BPs-229	0.60	-	0.06	-	< 0.02	-	
41	18-BPs-883	0.13	-	0.35	-	< 0.27	-	
49	18-BPs-573	19.60	-	< 0.50	-	< 0.50	-	
51	18-BPs-132	0.63	-	< 0.10	-	< 0.10	-	
55	18-BPs-389	0.79	-	-	-	< 0.50	-	
57	18-BPs-83	0.26	-	-	-	< 0.10	-	
61	18-BPs-470	< 0.50	-	0.07	-	< 0.10	-	
66	18-BPs-592	0.09	-	0.10	-	< 0.05	-	
68	18-BPs-86	0.31	-	-	-	0.31	-	
76	18-BPs-648	3.27	-	-	-	-	-	
87	18-BPs-299	< 3.96	-	< 1.86	-	< 5.63	-	
89	18-BPs-731	0.08	-	0.06	-	-	-	
96	18-BPs-331	< 0.80	-	< 0.20	-	< 0.03	-	
98	18-BPs-487	0.27	-	< 0.02	-	-	-	
100	18-BPs-442	ND	-	< 0.03	-	0.85	-	

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 33
Bisphenols in urine round 1			

Control material		LOW LEVEL SAMPLE (L)					
Parameter		I	BPA	I	BPS	BPF	
Number of particip	pants		24		19		21
Number of quantit	ative results		21		16		12
Target value estim	ated by ICI organizer ng/mL		0.60	(0.15	0	.06
Assigned value ng	ı/mL		0.92		0.19		-
Uncertainty of ass	igned value ng/mL		0.10		0.02		-
Study RSD _R (%)			41		39	8	81
Relative target sta	ndard deviation (%)		25		25	:	25
Laboratory code	ID sample	Value	Z'i-score	Value	Z'i-score	Value	Z-score
3	18-BPs-492	0.64	-1.0	9.17	173	3.54	-
4	18-BPs-855	10.50	38	0.16	-0.4	0.44	-
6	18-BPs-620	0.84	-0.3	0.18	-0.1	0.43	-
17	18-BPs-218	0.67	-0.9	0.14	-0.5	0.06	-
20	18-BPs-126	1.70	3.1	< 10	-	< 1.00	-
25	18-BPs-160	< 1.40	-	< 0.30	-	< 2.00	-
26	18-BPs-983	0.61	-1.1	0.17	-0.2	< 0.10	-
31	18-BPs-171	0.83	-0.3	0.45	5.1	< 0.20	-
36	18-BPs-40	1.25	1.3	-	-	< 0.50	-
39	18-BPs-513	0.94	0.1	0.19	0.1	0.07	-
41	18-BPs-278	0.58	-1.2	0.21	0.4	< 0.27	-
49	18-BPs-154	2.51	6.3	1.26	20.6	2.30	-
51	18-BPs-353	2.31	5.5	0.11	-1.0	0.29	-
55	18-BPs-261	1.26	1.4	-	-	< 0.50	-
57	18-BPs-680	0.83	-0.3	-	-	0.12	-
61	18-BPs-257	0.59	-1.2	0.18	-0.1	< 0.10	-
66	18-BPs-976	0.51	-1.5	0.23	0.8	0.13	-
68	18-BPs-459	0.88	-0.1	-	-	0.42	-
76	18-BPs-32	2.72	7.1	-	-	-	-
87	18-BPs-19	< 3.96	-	< 1.86	-	< 5.63	-
89	18-BPs-891	0.64	-1.0	0.15	-0.4	-	-
96	18-BPs-75	< 0.80	-	0.40	4.1	0.09	-
98	18-BPs-701	0.84	-0.3	0.02	-2.1	-	-
100	18-BPs-812	0.52	-1.5	0.03	-2.0	0.28	-

ICI report B	is	pheno	ls/round	1 1
Bisphenols	in	urine	round 1	

Control material		MEDIUM LEVEL SAMPLE A (Ma)					
Parameter		BPA		E	BPS	I	BPF
Number of particip	ants	24		19		21	
Number of quantita	ative results		23	16		15	
Target value estimate	ed by ICI organizer ng/mL	2	2.00	1	1.00	(0.50
Assigned value ng	/mL		2.44	().75		-
Uncertainty of assi	igned value ng/mL		0.14	(0.06		-
Study RSD _R (%)			16		26		67
Relative target star	ndard deviation (%)		25		25		25
Laboratory code	ID sample	Value	Z-score	Value	Z'-score	Value	Z-score
3	18-BPs-851	2.18	-0.4	2.65	9.6	2.02	-
4	18-BPs-748	11.00	14	0.25	-2.5	0.46	-
6	18-BPs-385	2.39	-0.1	0.65	-0.5	1.06	-
17	18-BPs-893	2.12	-0.5	0.73	-0.1	0.44	-
20	18-BPs-998	2.70	0.4	< 10	-	< 1.0	-
25	18-BPs-399	1.99	-0.7	0.85	0.5	< 2.0	-
26	18-BPs-880	2.06	-0.6	0.81	0.3	0.47	-
31	18-BPs-556	1.72	-1.2	1.24	2.5	< 0.20	-
36	18-BPs-925	3.03	1.0	-	-	3.16	-
39	18-BPs-897	2.64	0.3	0.87	0.6	0.40	-
41	18-BPs-164	1.35	-1.8	0.28	-2.4	< 0.27	-
49	18-BPs-545	12.39	16	< 0.50	-	< 0.50	-
51	18-BPs-705	6.19	6.1	0.67	-0.4	1.17	-
55	18-BPs-609	2.51	0.1	-	-	1.37	-
57	18-BPs-498	2.98	0.9	-	-	0.36	-
61	18-BPs-8	2.26	-0.3	0.95	1.0	0.18	-
66	18-BPs-972	2.06	-0.6	0.83	0.4	0.60	-
68	18-BPs-90	2.65	0.3	-	-	1.36	-
76	18-BPs-624	6.21	6.2	-	-	-	-
87	18-BPs-904	< 3.96	-	< 1.86	-	< 5.63	-
89	18-BPs-421	2.14	-0.5	0.87	0.6	-	-
96	18-BPs-538	2.10	-0.6	0.69	-0.3	0.31	-
98	18-BPs-517	2.70	0.4	0.07	-3.5	-	-
100	18-BPs-690	1.80	-1.0	0.36	-2.0	0.98	-

ICI report Bisphenols/round 1	
Bisphenols in urine round 1	

Control material		MEDIUM LEVEL SAMPLE B (Mb)					
Parameter		E	BPA	I	BPS	E	BPF
Number of particip	ants		24	19		21	
Number of quantita	ative results		23		17	14	
Target value estimate	ed by ICI organizer ng/mL	2	2.00		1.00	C	.50
Assigned value ng	/mL	2	2.58	(0.80		-
Uncertainty of assi	gned value ng/mL	().19	(0.07		-
Study RSD _R (%)			15		29		66
Relative target star	ndard deviation (%)		25		25		25
Laboratory code	ID sample	Value	Z-score	Value	Z'-score	Value	Z-score
3	18-BPs-679	2.56	0.0	2.11	6.2	2.11	-
4	18-BPs-636	12.30	15	0.43	-1.8	0.74	-
6	18-BPs-14	2.74	0.2	0.69	-0.5	1.17	-
17	18-BPs-166	2.10	-0.7	0.70	-0.5	0.43	-
20	18-BPs-982	1.90	-1.1	< 10	-	< 1.0	-
25	18-BPs-672	1.96	-1.0	0.84	0.2	< 2.0	-
26	18-BPs-747	2.17	-0.6	0.84	0.2	0.53	-
31	18-BPs-42	42.71	62	0.84	0.2	< 0.20	-
36	18-BPs-950	2.02	-0.9	-	-	< 0.50	-
39	18-BPs-330	2.67	0.1	0.98	0.8	0.40	-
41	18-BPs-625	1.71	-1.3	0.55	-1.2	< 0.27	-
49	18-BPs-536	5.08	3.9	1.28	2.3	< 0.50	-
51	18-BPs-971	5.89	5.1	0.71	-0.4	1.31	-
55	18-BPs-497	2.49	-0.1	-	-	2.99	-
57	18-BPs-198	3.00	0.7	-	-	0.30	-
61	18-BPs-619	2.10	-0.7	0.97	0.8	0.11	-
66	18-BPs-209	1.90	-1.1	1.00	0.9	0.53	-
68	18-BPs-316	2.68	0.2	-	-	1.08	-
76	18-BPs-732	4.00	2.2	-	-	-	-
87	18-BPs-653	< 3.96	-	< 1.86	-	< 5.63	-
89	18-BPs-476	2.47	-0.2	0.79	-0.1	-	-
96	18-BPs-779	2.80	0.3	0.85	0.2	0.40	-
98	18-BPs-106	2.58	0.0	0.07	-3.5	-	-
100	18-BPs-544	1.68	-1.4	0.32	-2.3	0.99	-

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 36
Bisphenols in urine round 1			

Control material		HIGH LE	EVEL SAMPL	.E (H)			
Parameter		E	ЗРА	BF	v S	BPF	
Number of participants		24		19		21	
Number of quantita	ative results		24	1	9	1	17
Target value estimate	ed by ICI organizer ng/mL	-	7.00	6.0	00	1.	.50
Assigned value ng	/mL	-	7.09	5.3	38		-
Uncertainty of assi	gned value ng/mL	(0.48	0.1	19		-
Study RSD _R (%)			5	1:	2	6	62
Relative target star	ndard deviation (%)		25	2	5	2	25
Laboratory code	ID sample	Value	Z-score	Value	Z-score	Value	Z-score
3	18-BPs-716	5.86	-0.7	12.43	5.2	9.03	-
4	18-BPs-917	10.51	1.9	0.91	-3.3	< 0.32	-
6	18-BPs-526	7.81	0.4	5.45	0.1	2.33	-
17	18-BPs-833	6.69	-0.2	5.31	-0.1	1.04	-
20	18-BPs-765	5.10	-1.1	10.80	4.0	1.20	-
25	18-BPs-62	6.65	-0.2	5.77	0.3	< 2.0	-
26	18-BPs-289	6.54	-0.3	5.41	0.0	1.01	-
31	18-BPs-496	7.50	0.2	5.23	-0.1	< 0.20	-
36	18-BPs-994	9.46	1.3	-	-	1.80	-
39	18-BPs-376	16.69	5.4	5.74	0.3	0.88	-
41	18-BPs-637	6.49	-0.3	4.18	-0.9	2.26	-
49	18-BPs-77	12.30	2.9	8.80	2.5	2.60	-
51	18-BPs-861	15.27	4.6	5.12	-0.2	2.70	-
55	18-BPs-363	8.07	0.5	-	-	1.43	-
57	18-BPs-464	5.16	-1.1	-	-	0.46	-
61	18-BPs-434	8.20	0.6	6.41	0.8	0.51	-
66	18-BPs-84	6.85	-0.1	5.61	0.2	1.05	-
68	18-BPs-2	8.80	1.0	-	-	2.35	-
76	18-BPs-312	6.09	-0.6	-	-	-	-
87	18-BPs-367	5.30	-1.0	3.63	-1.3	< 5.63	-
89	18-BPs-127	5.46	-0.9	5.51	0.1	-	-
96	18-BPs-741	4.60	-1.4	5.20	-0.1	0.85	-
98	18-BPs-26	6.17	-0.5	0.59	-3.6	-	-
100	18-BPs-901	5.51	-0.9	0.90	-3.3	5.59	-

ICI / EQUAS report Bisphenols/round 1	Version: 1/2018	Date of issue: 20-09-2018	Page: 37
Bisphenols in urine round 1			

Appendix 8. Summary of participant's score

		В	PA			s		
Lab code	Z'i-score L sample	Z-score Ma sample	Z-score Mb sample	Z-score H sample	Z'i-score L sample	Z'-score Ma sample	Z'-score Mb sample	Z-score H sample
3	-1.0	-0.4	0.0	-0.7	173	9.6	6.2	5.2
4	38	14	15	1.9	-0.4	-2.5	-1.8	-3.3
6	-0.3	-0.1	0.2	0.4	-0.1	-0.5	-0.5	0.1
17	-0.9	-0.5	-0.7	-0.2	-0.5	-0.1	-0.5	-0.1
20	3.1	0.4	-1.1	-1.1	-	-	-	4.0
25	-	-0.7	-1.0	-0.2	-	0.5	0.2	0.3
26	-1.1	-0.6	-0.6	-0.3	-0.2	0.3	0.2	0.0
31	-0.3	-1.2	62	0.2	5.1	2.5	0.2	-0.1
36	1.3	1.0	-0.9	1.3	-	-	-	-
39	0.1	0.3	0.1	5.4	0.1	0.6	0.8	0.3
41	-1.2	-1.8	-1.3	-0.3	0.4	-2.4	-1.2	-0.9
49	6.3	16	3.9	2.9	20.6	-	2.3	2.5
51	5.5	6.1	5.1	4.6	-1.0	-0.4	-0.4	-0.2
55	1.4	0.1	-0.1	0.5	-	-	-	-
57	-0.3	0.9	0.7	-1.1	-	-	-	-
61	-1.2	-0.3	-0.7	0.6	-0.1	1.0	0.8	0.8
66	-1.5	-0.6	-1.1	-0.1	0.8	0.4	0.9	0.2
68	-0.1	0.3	0.2	1.0	-	-	-	-
76	7.1	6.2	2.2	-0.6	-	-	-	-
87	-	-	-	-1.0	-	-	-	-1.3
89	-1.0	-0.5	-0.2	-0.9	-0.4	0.6	-0.1	0.1
96	-	-0.6	0.3	-1.4	4.1	-0.3	0.2	-0.1
98	-0.3	0.4	0.0	-0.5	-2.1	-3.5	-3.5	-3.6
100	-1.5	-1.0	-1.4	-0.9	-2.0	-2.0	-2.3	-3.3

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 38
Bisphenols in urine round 1			

Appendix 9. Graphical representation of the Z'i-scores, the Z'-scores and the Z-scores

LOW LEVEL SAMPLE (L)

MEDIUM LEVEL SAMPLE A (Ma)

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 39
Bisphenols in urine round 1			

MEDIUM LEVEL SAMPLE B (Mb)

Lab code

-4.0

HIGH LEVEL SAMPLE

Lab code

ε

Μ

-4.0

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 40
Bisphenols in urine round 1			

Appendix 10. Youden Plot – Z-scores associated to the medium level samples (a and b)

ICI / EQUAS report Bisphenols/round 1	Version: 1/2018	Date of issue: 20-09-2018	Page: 41
Bisphenols in urine round 1			

Appendix 11. Summary of participant's LOQ

	LOQ (ng/mL)						
Lab code	ВРА	BPS	BPF				
3	0.10	0.10	0.25				
4	0.44	0.06	0.32				
6	0.10	0.05	0.05				
17	0.09	0.01	0.03				
20	1.00	10.00	1.00				
25	1.40	0.30	2.00				
26	0.10	0.10	0.10				
31	0.10	0.40	0.20				
36	0.20	-	0.50				
39	0.20	0.04	0.02				
41	0.28	0.06	0.27				
49	0.20	0.50	0.50				
51	0.02	0.10	0.10				
55	0.20	NA	0.50				
57	0.03	NA	0.10				
61	0.50	0.05	0.10				
66	0.07	0.02	0.05				
68	0.03	-	0.04				
76	4.00	-	-				
87	3.96	1.86	5.63				
89	0.10	0.05	1.00				
96	0.80	0.20	0.03				
98	0.20	0.02	-				
100	0.10	0.03	0.03				

ICI / EQUAS report Bisphenols/round 1	Version: 1/2018	Date of issue: 20-09-2018	Page: 42
Bisphenols in urine round 1			

Appendix 12. Details of analysis methods used by the participants

			Extraction	Clean-up				
Lab Code	Volume of urine used (mL)	Type of deconjugation	Enzyme used (refnumber)		Type of column used for SPE offline	Liquid/liquid (yes/no)	SPE online (yes/no)	Type of column used for SPE online
3	3	enzymatic	G7017 Sigma	yes	Oasis HLB	no	no	
4	0.5	enzymatic hydrolysis	900145-0	no		yes	no	
6	3	enzyme hydrolisis	beta-glucuronidase and sulfatase from Helix Pomatia	yes	Oasis HLB	Yes	no	
17	2	enzymatic deconjugation	A balonase purified enzymatic formula Bglucu (beta gluc 10)	yes	chromabond HR-X / Affinimip	no	no	-
20	1		B-Glucuronidase (from red abalone)	yes	Waters Oasis HLB (3ml, 60 mg)	no	no	
25	0.5	enzymatic	beta-glucuronidase E. coli (Roche), ref. No. 03707598001	no	-	no	yes	Waters X-Bridge BEH C8 Direct Connect 10 µm
26	0.2	glucuronidase	b-Glucuronidase from Roche 03707601001	no	no	no	no	no
31	0.2	enzymatic	beta-glucuronidase, type H-1from Helix pomatia (CAS number: 9001-45-0)	no	not applicable	No	Yes	Betasil C 18 (3 x 10 mm, 5 micrometer particle size)
36	0.1	Enzymatic deconjugation: acid hydrolysis	β- glucuro nidase from Helix-pomatia (G7017 Sigma)	no		no	yes	polimer
39	1.5	enzymatic	ß-glucuronidase and sulphatase from H. Pomatia (Merck)	yes	AFFINIM IP® SPE Bisphenols	no	no	
41	0.4	no deconjugaison quantification of BPs-glucuronide	no enzyme	yes	Chromabond HR-XAW	no	yes	Xbridge C8
49	0.5	enzymatic hidrolisis	BETA GLUCORONIDASE ARYLSULFATASE HT1	no	no	no	no	no
51	0.6	Enzymatic	B-Glucuro nidase Sigma G7017	no		yes / SLE (Extrelut columns)	no	
55	3	emzymatic	β -Glucuro nidase from Helix pomatia Type HP -2 (CAS 900145-0), Sigma cat. Number G7017-2M L	no	not applicable	yes +dSPE (dispersive SPE for cleanup)	no	not applicable
57	0.5	D-glucuronidase	Sigma-Aldrich G7017-2M L	no		yes	no	
61	1	enzymatic	glucuronidase/arylsulfatase (Roche, REF 101276980001)	no	-	yes	no	-
66	0.2	de-sulfatation and de-glucuronidation	aryl sulfatase (sulfatase from A erobacter A erogenes, cas no: 9016-17-5, Sigma, S1629-50UN), beta-glucuronidase (from E-coli K12, ref no: 03707580001, Roche)	no	no	no	yes	Turbo Flow Cyclone P column (0.5 mm x 50 mm) from Thermo Scientific
68	2	deglucuro nidatio n	b-Glucuro nidase Helix po matia (Calbio chem cat: 347420-1MU)	no	NA	yes	no	NA
76	0.5	β-glucuronidase	Helix Pomatia ≥ 100.000 units/mL (Type HP-2)	yes	ODS C 18 Agilent	no	no	
87	0.5	Enzyme	Helix Pomatia	no	-	yes	no	-
89	0.3	enzymatic hydrolysis	ß-Glucuronidase from Helix pomatia Type HP-2 (Sigma G0876)	no		no	yes	Merck LiCrospher RP-8 ADS (RAM)
96	1	enzymatic	beta-glucuronidase from Helix Pomatia, type H-2, G0876	yes	Oasis HLB, Isolute SI	no	no	/
98	3	enzymatic	B-Glucuro nidase Arylsulfatase (EC 3.2.131+3.16.1)	yes	C 18	no	no	N/A
100	0.5	E. coli B-glucuronidase &Helix pomatia B-glucuronidase/Arylsulfatase	Roche 3707580001& 10127060001	no		no	yes	C 18

ICI report Bisphenols/round 1	Version: 1 Date: 20-09-2018		Page: 43	
Bisphenols in urine round 1				

	Measurement									Identification	
Lab Code	Derivatisation agent	Name and version of mass spectrometer	GC-MS (yes/no)	GC-MS/MS (yes/no)	LC-MS/MS (yes/no)	Type of column (GC or LC)	Response normalised to IS (yes/no)	Correction for recovery (yes/no)	Retention Time Tolerance (RRT)	Number of ions/transitions	Ion ratio tolerance
3	pyridine-3-s ulfo nyl chlo ride	Xevo TQ-XS Triple Quadrople Mass Spectrometer	no	no	yes	C 18	Yes	no		2	
4	no	LTQ Discovery Orbitrap (lon Trap)	no	no	yes	Fortis 2.6um SpeedCore C18-PFP, Size: 100x2.1mM	yes	yes	60 second	Quan/qual: 133/211(BPA) 107/155 (BPS), 93/123 (BPF)	10% (BPA), 40% (BPS), 75% (BPF)
6	MSTFA	7000A GC Triple Quad mass spectrometer	no	yes	no	HP5-MS	yes	no	0.05	2	0.2
17	MSTFA	Agilent 7010	no	yes	no	GC (Optima 17 M S)	yes	yes	0.005	2	0.2
20	NA	AB SCIEX API 3200	no	no	yes	LC	no	no	0.1min	1	
25	no	Waters Xevo TQ-S	no	no	yes	Macherey-Nagel Nucleoshell Bluebird RP 18 100*2 mm, 2.7µm	yes	no	no formal criteria (comparison of RT with internal standard)	1MRM transition per analyte	no formal criteria
26	no	QTRAP5500	no	no	yes	LC	yes	no	yes	2	
31	Not applicable	Agilent Triple Quad M S/M S 6490	no	no	Yes	LC: Zorbax Exlipse Plus (2.1x50 mm, 18 micrometer paricle size)	Yes	no	0.05 min relative to Internal standard	MRM single transition	
36	no	Vantage M S/M S	no	no	yes	C 18	yes	yes	±2,5%	2	±30%
39	BSTFA	Agilent 7000C	no	yes	no	Zebron semi-volatiles (20 m x 180 µm x 0.18 µm)	yes	no	<5%	5	25
41	Yes	Xevo TQD	no	no	yes	Phenyl-Hexyl	yes	no	0.01	2	0.4
49	no	TSQ-QUANTUM ULTRA	no	no	yes	LC	yes	no	0.025	2	0.2
51	Dansyl Chloride	Thermo TSQ Quantum Ultra	no	no	yes	LC Kinetex C18	yes	no	2 s	2	not used
55	BSTFA:TMCS (99:1)	ion trap Varian 220 M S	no	yes	no	GC: VF 5-ms 30m x0.25mm x0.25um +10m EZ-Guard	no	no	±0.100 min	2	20
57		Qtrap 5500	no	no	yes	Pheno menex Luna C 18(2)	yes	yes	0.1min	2	0.2
61	-	Waters Xevo TQ-S	no	no	yes	C8	yes	no	0.25 min	2	
66	no	TSQ Vantage ${\rm MS/MS}$ system from Thermo Fisher Scientific	no	no	yes	LC-column: Hypersil Gold aQ (0.4 mm x 50 mm, 3 um particle size) from Thermo Scientific	yes	no	0.05 min	2 for BPA, 1for BPF, 1for BPS	not calculated
68	TFAA (Trifluoroacetic anhydride)	Agilent 7000B GC-M S/M S triple quadrupole	no	yes	no	Phenomenex Zebron ZB-5M Si (30x0.25x0.25)	yes	no	0.05	4	0.2
76	N,O-Bis(trimethylsilyl)trifluoroacetamide with trimethylchlorosilane (BSTFA+1%TMCS)	Agilent 7890A coupled with Agilent 5975C	yes	no	no	Capillary column DB-5M S UI (30m X 0.25mm X 0.25µm)	yes	no	Integrated Retention Time-Locking software	2	
87	no	Agilent 6490	no	no	yes	Kinetex Phenyl-hexyl 100A 2.6 µm (150 x 2.1 mm)	yes	yes	0.2min	2	0.2
89		AB Sciex 5500 Qtrap	no	no	yes	Waters Atlantis T3 (3.0x150; 3µm) for BPA Thermo Accucore Phenyl-X (3.0x150; 2.6µm) for BPS	yes	no	n.a.	2	0.2
96	MSTFA	Agilent 7000B	no	yes	no	DB 5 M S UI	yes	no	0.01	3	0.25
98	N/A	Thermo Quantiva	no	no	yes	C18	yes	no, calibration subie la SPE	0.1min	3	N/A
10 0	no	EVOQ elite M S/M S	no	no	yes	LC C18	no	no, iso to pe dilution	0.1min	2 or 3	0.2

ICI report Bisphenols/round 1	Version: 1	Date: 20-09-2018	Page: 44
Bisphenols in urine round 1			

	Internal Standards used to quantify			Calibration type						
Lab Code	Bisphenol A (BPA)	Bisphenol S (BPS)	Bisphenol F (BPF)	Isotopic dilution Addition before extraction (yes/no)	Isotopic dilution Addition to final extract (yes/no)	standard addition Addition before extraction (yes/no)	standard addition Addition to final extract (yes/no)	Matrix matched Addition to blank matrix before extr (yes/no)	Matrix matched Addition to blank extract (yes/no)	Solvent standards (yes/no)
3				yes	no	yes	no	no	no	no
4	Bisphenol A - d16	Bisphenol A - d16	Bisphenol A - d16	yes	no	no	no	no	yes	yes
6	BPA d14	BPSd8	BPA d14	yes	no	no	no	no	yes	no
17	BPA 13C	BPS 13C	BPF 13C	yes						yes
20				no	no	no	no	yes	no	no
25	13C 12 (ring)	13C 12 (ring)	13C 12 (ring)	no	no	no	no	yes	no	no
26	2H14	13C 12	2H 10	no	yes	no	yes	no	yes	no
31	13C	13C	13C	yes	no	no	no	yes	no	no
36	13C 12B P A	NA	13C 12B P A	yes	no	no	no	yes (synthetic urine)	no	no
39	13C-BPA	13C-BPS	13C-BPF	yes	no	no	no	no	no	yes
41	BPA-Gluc 13C12	BPS-Gluc d8	BPA-Gluc 13C12	yes	no	no	no	yes	no	no
49	BPA-D16	BPS-D8	BPF-D10	no	no	no	no	yes	no	no
51	Bisphenol A 2H		Bisphenol A 2H	no	no	no	no	yes	no	no
55	BPA d16	NA	BPA d16	yes	no	no	no	no	no	no
57	13C 12		13C 12	yes	no	no	no	no	no	yes
61	d8-BPA	d8-BPS	d10-BPF	yes	no	no	no	no	no	yes
66	D8-BPA	13C12-BPS	13C12-BPF	yes	no	no	no	yes	no	yes
68	BPA-D16	NA	BPA-D16	yes	no	no	no	yes	no	yes
76	BPAD16			yes	no	yes	no	no	no	yes
87	BPA (D14)	BPA (D14)	BPA (D14)	yes	no	no	no	no	no	no
89	D16-BPA	13C12-BPS	D10-BPF	yes	no	no	no	no	no	yes
96	2d-BPA	13C-BPF	13C-BPS	yes	no	no	no	yes	no	no
98	BPA d6	no	N/A	yes	no	no	no	no	no	no
100	d16	13C 12	13C 12	yes	no	no	no	no	no	no