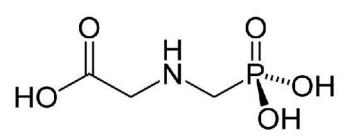


HBM4EU project

Determination of Glyphosate, methods and application Laura Kenny, HSL, UK 2nd HBM4EU Training School 2018

- 1. Background
- 2. Biomarkers
- 3. Literature
- 4. HSL Method
- 5. Issues
- 6. Summary/conclusions

Glyphosate


Widely used

Considered harmless for years

Complicated to analyse

Highly polar

Low MW (169 amu)

IARC classification (2015)

2A – Probably carcinogenic to humans

No universal agreement

Metabolism

Little to no metabolism occurs

Small amount converted to AMPA

Matrices

Urine – Most common

Blood (serum/ plasma) - Few reports (acute poison cases)

Urine biomarkers

Unchanged parent compound

Aminomethyl phosphonic acid (AMPA)

Similar toxicology to Glyphosate

Available HBM studies prior to IARC classification

References	Analytical method, LOD/LOQ	Participants	Urine concentrations [µg/l]		
			Mean	Maximum	
Acquavella et al. (2004)	HPLC following ion exchange LOD 1 μg/L	48 male farmers from Minnesota and South Carolina (USA), their spouses and 79 children	3.2	233 (farmer) 29 (child)*	
Curwin et al. (2007)	Immunoassay (fluorescent microbeads) LOD 0.9 µg/L	48 women, 47 men, 117 children from "farm" and "non-farm" households in lowa	1.1–2.7 (in different groups)	18 ("farm child")"	
Mesnage et al. (2012)	HPLC-MS LOD 1 μg/L LOQ 2 μg/L	1 farmer, his wife and 3 children, presumably Europe	n.a. (only single values available)	9.5 (farmer) 2 (child)*	
Hoppe (2013)	GC-MS/MS following derivatisation LOQ 0.15 μg/L	182 citizens from 18 European countries	0.21	1.82	
Markard (2014)	GC-MS/MS (presumably) LOQ 0.15 µg/L	40 male and female German students	n.a. (22 samples above LOQ)	0.65	
Krüger et al. (2014)	ELISA partly validated against GC-MS LOD/ LOQ not given	>300 (mostly from Germany)	⊴	5	
Honeycutt and Rowlands (2014)	ELISA LOQ 7.5 μg/L	35 women, men and children from USA	n.a. (13 samples above LOQ)	18.8	

Not all in peer reviewed publications

Missing details about analytical methods

Missing LoQ/LoD

Neimann et al (2015) J. Verbr. Lebensm. 10:3–12

GC-MS

Derivatisation

Trifluoroethanol, Trifluoroacetic acid, Heptafluoro butanol, Trifluoroacetic anhydride...etc

Often 2 derivitisation steps

Hazardous

Some require very cold working temperatures

Example methods

Hoppe et al (2013)

2 step derivitisation

Low LoQ of 0.15 µg/L

Applied to 182 samples (18 countries)

LC-MS/MS

Can be analysed without derivitisation
Direct injection possible
Chromatography can be troublesome
Lack of retention
Poor peak shape

Example methods

Jensen et al (2016)
Simple extraction
Dilute urine with formic acid
Low LoQ of 0.1 µg/L

Typical results

Studies in some agreement

Low levels – typically $< 20 \mu g/L$

LoQs

 $0.1 - 1 \,\mu g/L$

No method / instrumentation consistently lower

No 'gold standard' method

Wide variety of methods

Most have strengths and weakness

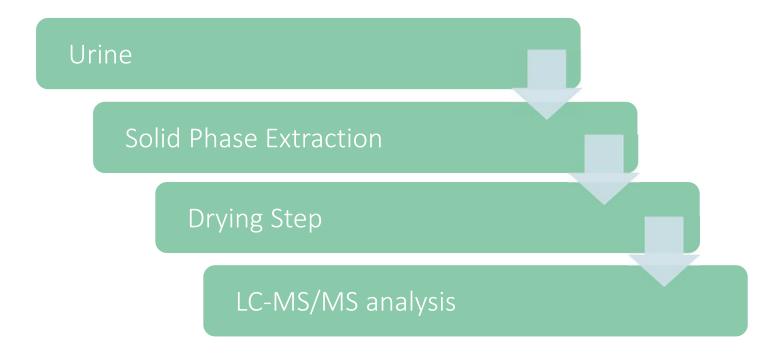
Lack of quality in some reported methods

ELISA

Few publications using this method

Lack of data on performance

1 study has LoD of 7.5 μg/L


Food Analysis

Nagatomi et al (2013)

Beer, Barley Tea...

SPE and acid extraction

Overview

HBM4EU project

Glyphosate: HSL Method

Sample Treatment

200 μl urine sample in 800 μl water Glyphosate-2-¹³C,¹⁵N (Internal Standard)

SPE

Strata SAX, 100 mg/1 mL (Phenomenex)

Condition: Water

Sample load

Wash: Water

Elution: 10% Formic acid in methanol

Preparing for instrument analysis

Evaporate elution solvent using nitrogen stream Reconstitute in 100 μ l of 0.1% formic acid

HBM4EU project

Glyphosate: HSL Method

Liquid Chromatography

System: Shimadzu HPLC

Gradient: 0.1% Formic acid

Acetonitrile

Column: Zorbax XDB-C8, 150 x 4.6 mm, 5μ (Agilent)

flow rate: 0.4 mL/min

Injection vol: 10 μL

Run time: 16 minutes

Useful info

Method originally developed for 2 analytes (fluroxypyr)

Higher flow rate helps with peak shape

Low back pressure because of column dimensions

Mass Spectrometry

Negative MRM

m/z = 168/63

CUR: 50

CAD: High

Voltage: -4500

Temp: 500°C

GS1: 70

GS2: 50

Useful info

Lower gasses resulted in no signal Very sensitive to contamination/ charging

Calibration

Linear range 0 – 20 μ g/L, Matrix matched ($r^2 > 0.999$)

Quality Control

8 μg/L spike level

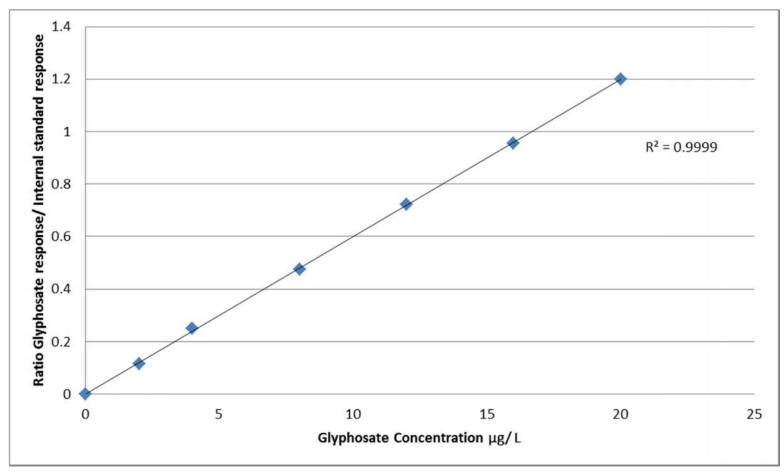
Mean = $8.5 \mu g/L$, n = 40

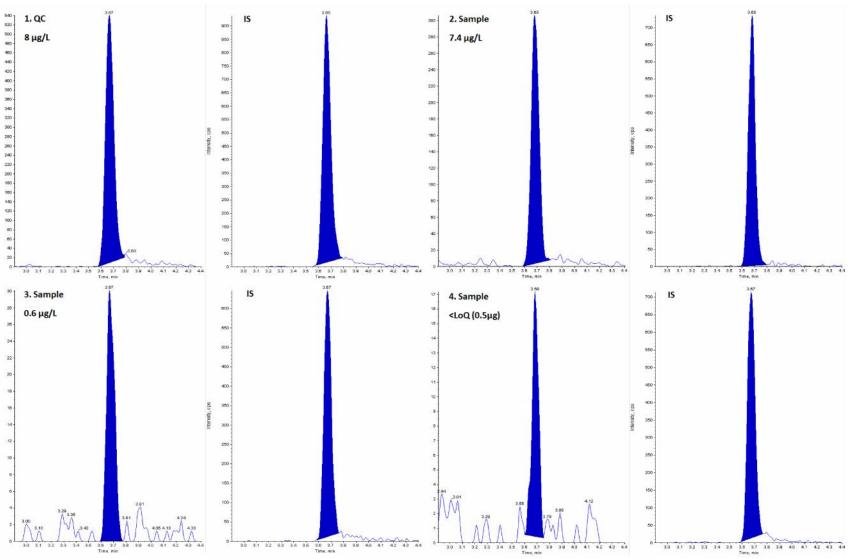
Intra assay CV = 3.5%, N = 10

Inter assay CV = 10.0%, N = 40 over 4 runs

<10% long term N = 226 , >25 runs

Stability


2 years at -20°C


Short term storage (24 hours) tested at 37°C, RoomTemperature, 4°C Room temperature also tested for 4 days

LoQ

 $0.5 \mu g/L$

Standard Calibration

Background

Ireland

Small - 50 participants

20% > LoQ

 $0.8 - 1.35 \,\mu g/L$

Occupational

Amenity horticulture workers

Ireland

Amenity horticulture workers

Spot urine samples (Pre and post shift)

HBM4EU project

Glyphosate: HSL Method

References	Type of study	Country	Analytical Method	LOD/LOQ (µg L ⁻¹)	Participant numbers	Urine conc. (µg L ⁻¹)	
						Statistic & Value	Max
*Current study	Occupational exposure in horticulture amenity gardening.	Ireland	LC-MS/MS ²	LOD 0.5	19 workers	AM 1.35	10.66
Mesnage et al. (2012)	Family exposure in agricultural setting	Europe	HPLC-MS ³	LOD 1 LOQ 2	1 farmer & spouse & 3 children	N/A	9.5
Curwin et al. (2007)	Farm families and 'non-farm' families	United States	Immunoassay (fluorescent microbeads)	LOD 0.9	47 fathers, 48 mothers and 117 children	AM 1.1-2.7	18
Acquavella et al. (2004)	Occupational and residential exposures in	United States	HPLC following ion exchange	LOD 1	48 farmers, 48 spouses & 79 children.	GM	233
Jayasumana et al. (2015)	agricultural setting. Investigate glyphosate levels in Sri Lankan Agricultural Nephropathy (SAN)	Sri Lanka	ELISA4		30-3 groups of 10).	3.2 Median	≥80
	patients		validation done in comparison with GC-MS		Group 1 Group 2 Group 3	56.8 73.5 3.3	
*Rudzok et al. (2016)	Environmental exposures	Germany	GC-MS/MS ³	LOQ 0.15	250 samples 2-6 year old children.	Median	95th%ile
Conrad et al. (2017)	Environmental exposures	Germany	GC-MS/MS	LOQ 0.1	399 samples adults	0.14 Median 0.18	0.97 2.80
*Hoppe (2013)	European study – back- ground/dietary	Europe	GC-MS/MS	LOQ 0.15	182 urine samples, 18 European countries	AM	1.82
*Markard (2014)	exposures Environmental	Germany	GC-MS/MS (presumed)	LOQ 0.15	10 male 10 female	0.21 N/A	0.65
Krüger M et al. (2014)	exposures Human & animal to investigate environmental	Europe	ELISA partly validated against GC-MS	LOD/LOQ unknown	14 human samples	≤2	5
*Honeycutt and Rowlands (2014)	exposures. Environmental exposures	United States	ELISA	LOQ 7.5	35 (male, female and children).	NA	18.8

N/A: Information not available due to single measurements or not given in literature.

Connolly et al (2017) International Journal of Hygiene and Environmental Health, 220(6): 1064-1073

^{*}Literature that has not gone through peer review or is unpublished reports. Partial details from this table was obtained in (Niemann et al., 2015).

Occupational

Amenity horticulture workers

Ireland

Amenity horticulture workers

Pre, post and following morning void samples

All voids for 24 hours collected from some participants

Findings

Results were similar to previous study

Best sampling time is up to 3 hours post exposure

Half-life information gathered

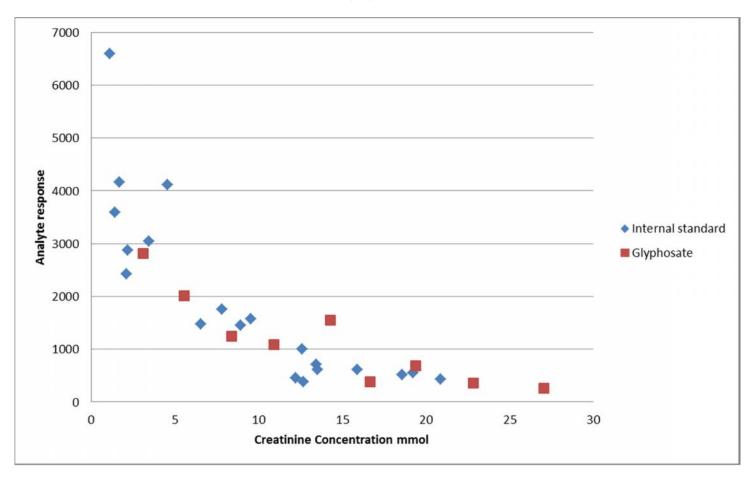
Issues

Loss of peak shape over time

Loss of sensitivity over time

Both often fixed with a new column or source clean

Charging


Glyphosate particularly sensitive Cleaning of Q1 needed

Ion suppression

Better clean-up procedure needed

Ion suppression

Summary

Glyphosate interest high

Quality data is needed

Decent methods exist but not without issues

Agreement on method approach

Sharing methods/ experiences can help improve processes

Contact details:

laura.kenny@hse.gov.uk
+4420 3028 2070
www.hsl.gov.uk

Thank you for your attention.

Any questions?

