

science and policy for a healthy future Determination of aflatoxin biomarkers for acute and chronic exposure Arnau Vidal, Sarah De Saeger & Marthe De Boevre 2nd HBM4EU Training School 2018

1. Overview

2. Aflatoxin biomarkers

3. Determination aflatoxin biomarkers

4. Quality Control and determination of "Unknowns"

- •International Agency for Research on Cancer (IARC)
- •Classification according to evidence of carcinogenicity to humans

Group	Classification	Mycotoxins
1	Carcinogenic to humans	aflatoxins
2A	Probably carcinogenic to humans	I
2B	Possibly carcinogenic to humans	ochratoxin A, sterigmatocystin and fumonisins
3	Not classifiable as to its carcinogenicity to humans	deoxynivalenol, nivalenol, T-2 toxin, diacetoxyscirpenol, zearalenone, citrinin and fusarenon-X
4	Probably not carcinogenic to humans	1

•As DON, AFB1 has validated biomarkers

AF biomarkers

•Acute exposure: AFB-N7-guanine

Groopman et al., 1992

AF biomarkers

•Acute exposure: AFB-N7-guanine

•Chronic exposure: AFB1-lysine

- \checkmark AFB1-lysine biomarker validated ELISA (Wild et al., 1992).
- \checkmark AFB1-lysine biomarker validated by LC-MS/MS (McMillan et al, 2018).

2.6 times more specific than ELISA technique

AF biomarkers

•Chronic exposure: AFB1-lysine

✓ AF-lysine biomarker validated ELISA (Wild et al., 1992).

Fig. 4. Mean daily aflatoxin food intake over the 7-day period, plotted against the level of aflatoxin-albumin adduct on day 8 of the study. Each point represents one individual. \bullet , HB,Ag carriers; O, noncarriers. The letters next to the points represent the individuals in Table 1. Linear regression is plotted (correlation coefficient, r = 0.55; P < 0.05 on log-transformed values).

AF biomarkers

• Assess mycotoxin exposure with correct mycotoxin biomarker:

McMillan et al., 2018

- •However, AF biomarkers in urine:
 - 4 metabolic pathways:
 - ✓ O-dealkylation: AFP1
 - ✓ Keto-reduction: AFL
 - ✓ Epoxidation: AFB1-8,9-epoxide
 - ✓ Hydroxylation: AFM1, AFP1, AFQ1 or AFB2
 - AFQ1>AFM1 (Mykkanen et al., 2005)
 - AFP1>AFB1-N7-guanine (Groopman et al., 1992).
 - Lack of commercial standards

- *In vivo* study
 - Analysis of:
 - AFB1 (standard)
 - AFB2 (standard)
 - AFG1 (standard)
 - AFG2 (standard)
 - AFM1 (standard)
 - AFB1-lys (synthesised)
 - AFB1-N7-guanine (synthesised)
 - AFQ1 (no standard)
 - AFP1 (no standard)
 - Isotolabelled C13 AFB1 (Internal standard)

- In vivo study
 - Extraction method:
 - IAC columns:
 - \checkmark NOT highly checked for AF conjugates.
 - ✓ Expensive.
 - ✓ Long time.
 - ELISA:
 - ✓ Higher LOD.
 - ✓ Less specific.
 - Dilute and shoot:
 - ✓ Small volume.
 - ✓ Fast.
 - Liquid/Liquid extraction:
 - ✓ You can concentrate.
 - ✓ Check recovery 4EU Training School, Nijmegen, November 19-23, 2018

Determination of AF biomarkers

Coutnry (matrix)	Mycotoxins	Extraction method	Limit of detection (ng/mL)	Average (ng/mL)	Reference
Belgium (Urine)	AFB1 AFB2 AFG1 AFG2 AFM1	Liquid/Liquid	0.001	Not detected	Heyndrickx et al., 2015
Belgium (Urine)	AFM1 AF-guanine	Liquid/Liquid with SPE column	0.01 0.85	Not detected	Njumbe Ediage et al., 2012
Italy (Urine)	AFB1 AFB2 AFG1 AFG2 AFM1	IAC Column	0.010 0.006 0.006 0.004 0.002	0.010 (0.8 %) 0.007 (0.8%) 0.058 (0.8%) 0.057 (11.1%) 0.042 (73.7%)	Ferri et al., 2017
Italy (Plasma)	AFB1 AFB2 AFG1 AFG2 AFM1	IAC Column	0.025 0.025 0.006 0.006 0.025	Not detected	Ferri et al., 2017

• In vivo study

2nd HBM4EU Training School, Nijmegen, November 19-23, 2018

• In vivo study

Coutnry (matrix)	Mycoto xins	Extraction method	Limit of detection (ng/mL)	Average (ng/mL)	Reference
Ethiopia (Urine)	AFB1 AFB2 AFG1 AFG2 AFM1	Dilute and shoot	0.025	- 0.047 (4.5%) 0.061 (2.5%) 0.068 (3%) 0.064 (7%)	Ayelign et al., 2017
Cameroon (Urine)	AFM1 AFN7guani ne	Liquid/liquid	0.01 0.83	0.33 (max = 4.7) (14 %)	Njumbe Ediage et al., 2013
Nigeria (Urine)	AFM1	ELISA	0.06	0.27 (98.8 %)	Chibundu et al., 2018
Malawi (Plasma)	AFB1lys	Liquid/Liquid	0.002	0.023 (73%)	Seetha et al., 2018
Nigeria (Plasma)	AFB1lys	Liquid/Liquid	0.022	0.0026	McMillan et al., 2018

QA-CONTROL LC-MS/MS

QA-CONTROL in BIOMARKER ANALYSIS using LC-MS/MS

2nd HBM4EU Training School, Nijmegen, November 19-23, 2018

- First line control
- Second line control
- Third line control

• Identification of 'unknowns'

• First line control

- ✓ Assurance of a good performance of the analytical device and the correctness of the acquired results.
- ✓ Analysis according to a quality control (QC)-scheme of a serie of unknown samples

17

• First line control

- 1. A mix of calibrants in pure solvent = standard mix.
- 2. Sample with pure injection solvent = mobile phase.
- 3. Blank sample (urine/plasma/...).
- 4. Spiked samples for the calibration curve (min. 5 points).
- 5. Sample with pure injection solvent = mobile phase.
- 6. Ten unknown samples.
- 7. Control spike.
- 8. Ten unknown samples.
- 9. Control spike.

• First line control

- 1. A mix of calibrants in pure solvent = standard mix.
- 2. Sample with pure injection solvent = mobile phase.
- 3. Blank sample (urine/plasma/...).
- 4. Spiked samples for the calibration curve (min. 5 points).
- 5. Sample with pure injection solvent = mobile phase.
- 6. Ten unknown samples.
- 7. Control spike.
- 8. Ten unknown samples.

9. Control spike.

What	Why	QC criteria		Consequences if QC-
What	Villy		criteria are not fulfilled	
Control spike	Check quantification during injection- sequence	 The recovery of each comprange between (concentrate Concentratie 1 μg/kg 1 μg/kg - 10 μg/kg 210 μg/kg Or as determined as in the metodom (compound specific) Set-up a trend analysis! 	bound needs to ion dependent): Interval 50% - 120% 70% - 110% 80% - 110%	 When recovery is NOT OK: quantification of all samples between control spike and previous control spike are not reliable. Re-analysis! The recovery of the control spike needs to be followed-up over a longer period. Visible trends need to be investigated when they falls out of an interval.

- Second line control
 - ✓ Periodical evaluation (*eg* 2/year).
 - ✓ To check method with the acquired method validation (accuracy, LOD/LOQ, ...).
 - ✓ New analyst.
 - ✓ ...
 - ✓ Analysis of certified reference material.
 - \checkmark Analysis of spiked sample by a third person.
 - ✓ Analysis of a blind, duplicated sample.

- Third line control
 - Quality control organised by an independent external organisation.
 - ✓ Interlaboratory test.
 - ✓ To compare and evaluate the performance of your developed method with other methods.
 - ✓ At least 1 x 3 years.

- Identification of unknowns
- •Fulfilment of **4 identification criteria**:
 - Minimum of 3 to more identification points because 2 MRM-transitions are present.
 - 2. S/N every MRM-transition > 3.
 - **3. Relative peak-area** of selected ions has to correspond with those ions of the spike with a comparable concentration in an acceptable deviation.
 - 4. Relative retention time of each MRM-transition should be within a range of 2.5% of the relative retention time of the spiked sample with a comparable concentration.22

- Identification of unknowns
- •Fulfilment of **4 identification criteria**:
 - Minimum of 3 to more identification points because
 2 MRM-transitions are present.

The relationship between a range of classes of mass fragment and identification points earned

	MS technique		Identification points earned per ion	
	Low resolution mass spectrometry (LR)	1,0		
	LR-MS ⁿ precursor ion	1,0		
$\langle \langle$	LR-MS ⁿ transition products	1,5	X 2 (MRM transitions) = 3 iden	tification points
	HRMS	2,0		
	HR- MS ⁿ precursor ion	2,0		
	HR-MS ⁿ transition products	2,5		

Identification of unknowns

•Fulfilment of 4 identification criteria:

2. S/N every MRM-transition > 3.

- Identification of unknowns
- •Fulfilment of **4 identification criteria**:

3. Relative peak-area of selected ions has to correspond with those ions of the spike with a comparable concentration in an acceptable deviation.

Relative intensity	Accepted limits
(% of mean peak)	LC-MS/MS
> 50%	±20%
> 20% – 50%	±25%
> 10% - 20%	± 30%
≤ 10%	± 50%

- Identification of unknowns
- •Fulfilment of **4 identification criteria**:

3. Relative peak-area of selected ions has to correspond with those ions of the spike with a comparable concentration in an acceptable deviation.

- Compare with spike with similar concentration.
- Relative peak area spike: (area ion 331>313)/(area ion 331>245) = x
- Range determined on spike: [x limit; x + limit].
- Relative peak area unknown: (area ion 331>313)/(area ion 331>245) = z
- x limit < z > x + limit.

27

Identification of unknowns

•Fulfilment of 4 identification criteria:

4. Relative retention time of each MRM-transition should be within a range of 2.5% of the relative retention time of the spiked sample with a comparable concentration.

2nd HBM4EU Training School, Nijmegen, November 19-23, 2018

• Identification of unknowns

•Fulfilment of 4 identification criteria:

4. Relative retention time of each MRM-transition should be within a range of 2.5% of the relative retention time of the spiked sample with a comparable concentration.

- Compare with calibration standard (spike)
- Relative retention time spike: (RT MYCO)/(RT IS) = r
- Range calculated on spike: [r 2.5%; r + 2.5%]
- Relative retention time unknown: (RT Unkown)/(RT IS)
 t
- r-2.5% <t>r+2.5%

Identification of unknowns

HBM4EU project

Only where is present in your unknown ecause 2 •Fulfilment of 4 identification criteria oft sample!

2nd HBM4EU Training School, Nijmegen, November 19-23, 2018

MYTEX MYTEX South

Contacts

Arnau Vidal

Arnau Vidal PhD works as a FWO PostDoc at the Centre of Excellence on Mycotoxicology and Public Health, Ghent University, Belgium.

Email:

Arnau.vidalcorominas@ugent.be

Marthe.deboevre@ugent.be

Sarah.desaeger@ugent.be

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 733032.