

science and policy for a healthy future

HBM4EU project

2nd HBM4EU Training School 2018

A08 Mycotoxins and Pesticides biomarker analysis

SESSION 1: GENERAL ASPECTS

Hans Mol

Outline

Trends in instrumental analysis

HBM meets food safety analysis: What can we learn from mycotoxin/pesticide residue analysis in food or should at least know about....

- Laboratory networks
- Harmonisation of analytical procedures/performance criteria

LOD/LOQ: sense and nonsense

The instrumental tool box

Trends

Trends in chromatography-mass spectrometry

<u>Chromatography:</u> LC: from HPLC to UHPLC faster <u>or</u> better separation Improved columns for polar analytes

Detection: MS/MS is king

Faster MS/(MS) measurement:

⇒ more analytes in 1 run <u>or</u> shorter runs <u>or</u> combined pos/neg, FS, SIM, MS/MS,)

Triple quads: ESTABLISHED TECHNOLOGY / CURRENT GOLD STANDARD FOR ROUTINE sensitivity improvement with each generation \Rightarrow lower LODs <u>or</u> less sample prep (dilute&shoot) <u>and/or</u> less matrix into MS

High resolution MS (TOF/Orbitrap): EMERGING / MATURING

improvement of sensitivity, resolution (selectivity), dynamic range, scan speed with each generation => becoming a suitable alternative for triple quad quantitative analysis

Sensitivity & selectivity

Scope: highly relevant in pesticide residue analysis in food, in future also for HBM

detector	mass analyzer		acquisition mode	selectivity	sensitivity	scope
MS	single quad	nominal mass	full scan	(-)	+	++++
MS			SIM	(-) /++ [1]	++/+++[1]	++
MS/MS	triple quad/Qtrap	nominal mass	SRM/MRM	++	+++	++
HRMS	TOF/Orbitrap	accurate mass	full scan	+/++	++	++++
MS/HRMS	Q-TOF/Qrbitrap	accurate mass	SRM/MRM; AIF	++/+++ ;	++	++

[1] GC-NCI-MS for halogenated substances/derivatives

SIM: single ion monitoring

SRM = single reaction monitoring

MRM = multiple reaction monitoring

HRMS = high resolution MS (typically > 25,000 FWHM, mass accuracy < 1 mDa or <5 ppm)

MS/MS = tandem mass spectrometry

MS/HRMS = tandem mass spectrometry with accurate mass detection of product ion

Trends

Targeted vs non-targeted measurementtrends

	Targeted MS/MS	Full scan / untargeted MS
Instrument:	triple quad, Qtrap, QTOF, Q-Orbitrap	High Resolution MS: (Q)TOF, (Q-)Orbitrap
Acquisition:	MS/MS	FS hrMS (+fragm. w/o precursor ion selection)
Scope:	1-300 substances	Anything that enters the source and ionises
Data:	XIC of analyte MS/MS transitions	XIC of analyte exact masses ± x mDa (ppm)
Result:	Quantitative for all subst. incl. in cal.stds/QC samples	Quantitative for all subst. included in cal.stds/QC samples
		Qualitative/suspect screening
Cons:	 Optimization needed for each analyte Acquisition in time windows Only substances in acquisition method can be detected 	 Generic acquisition conditions can compromise sensitivity Very large data files
Pros:	 + Optimized acquisition for each subst. => highest sensitivity/selectivity 	 + Straightforward measurement + 'unlimited'# substances + Suspect screening (detection w/o standards + New options for unknowns/profiling + Retrospective evaluation of data

Full scan HRMS: extract biomarkers from raw data

Outline

Trends in instrumental analysis

HBM meets food safety analysis: What can we learn from mycotoxin/pesticide residue analysis in food or should at least know about....

- Laboratory networks
- Harmonisation of analytical procedures/performance criteria

LOD/LOQ: sense and nonsense

HBM ⇐ Food safety analysis

Mycotoxins & Pesticides:

General population: food is main route of exposure

⇒ HBM: alternative to traditional exposure assessment (exposure = dietary intake = food consumption x food concentrations)

Mycotoxins and Pesticides in food (/feed) heavily regulated in EU Analysis: long established lab networks, guidance documents etc

HBM4EU: establishment in progress, multiple labs, assigned by WP9 QAU

<u>Tasks:</u>

Centre of expertise, method development, guidance documents Organisation of workshops, organisation of proficiency tests Advise/respond to questions COM/EFSA

RIKILT, Wageningen, November 22nd 2018, part of 2nd HBM4EU Training School, Nijmegen, November 19th-23rd, 2018

10

HMB meets Food safety

	5	Search: Gol
Commission EURL	EU Reference La	aboratories for Residues of Pesticides
You are here: Home EURL EURL for Portal Fruits and Vegetables Ce Topics Ce	EURL for reads and Feeding Stuff Food of Animal Origin Single Residue Methods Method information and validatation data published by EURLs	Quicklinks
General Info DG SANTE About EURLs RASFF Control Programs	One of the foreseen activities of the EURLs is the development and validation of methods and the dissemination of technical information among the NRLs. Methods, validation reports and analytical observation reports published by the 4 EURLs can be found under the following links: • EURL-FV: CLICK HERE	EURL-DataPool EU-MRLs Database (COM) EU-Legisl. on MRLs (COM) EU-Legisl. on PPPs (COM) RASFF Portal DB (COM)
AQC Procedures AQC Documents AQC Panel	EURL-AO: CLICK HERE EURL-SRM: CLICK HERE	CIRCA BC Login How to Use CIRCA BC EURL Method Finder List
Proficiency Tests About EUPTs General Protocol Annual EUPT-Calendars EUPT-FV20 EUPT-FV20	The EURL Method Finder List summarizes the EURL-methods, -validation reports, and -analytical observation reports for the compounds included in the MACP-Regulations and MACP-WDS. Additional information relevant to pesticide residue analysts can be found at EURL DataPool: CLICK HERE. The EURL DataPool contains among others	Pinboard More Pinboard Messages Calendar
EUPT-CF12 EUPT-AO13 EUPT-SRM13	 an extensive collection of validation data from various laboratories using different methods, a collection of data on the stability of analytical standards, 	Oct V 2018 V Show
Workshops Workshop Overview	GC-MS masses and spectra, LC-MS/MS mass-transitions	
Library News Archive Surveys List of Methods	 LC-ToF accurate masses for parents and daughter ions the analytically most relevant physicochemical properties of pesticides a tool for the calculation of the residue levels as expressed in the residue definition based on the results of the individual components 	
Network EU Contact Points Lab Contact Data Network News	a tool for the calculation of the measurement uncertainty (under construction) Published 15-07-2010, 11:51:00	
	Share: 🗗 💟 🎦 🛅 🗖	

http://www.eurl-pesticides.eu/docs/public/home.asp?LabID=100&Lang=EN

HMB meets Food safety

Attps://www.eurl-pesticides-datapool.eu/Member/Compound			₽ - A	🖒 📮 Intranet WUR	Compound De	 Review of the exi 	Review of the exi	🖙 Review of the exi
View Favorites Tools Help				20				
esethyl Previous Next 💋 Op	tions 🔻							
							8	<u>Logout My Profile Abo</u>
EURL-DataPool						EU Reference	Laboratories for Re	sidues of Pesticide
Home Compound Data Regulatory myLab myNRL Networ	k Reference Labs	Tutorials						
Compounds Accurate Mass Data Method Validation Data	Stability of Compound	5 T						
Compound Details								
	M510F01 - Compo	und Details					×	
Save Settings Load Settings	General Physico	chemical Properties	LC Behaviour	GC Behaviour Toxicity Met	abolites Regulatory			
Compound Compound Group	LC/MS-amenabl	e	Yes			M510F01	: LC/MS Am	enable :
T boscalid	Remark					\sim		* 7
Details Boscalid Boscalid							Yes	
						лон		
Details M510F01 Boscalid							Yes	
	LC-MS/MS							
	Ionization Mode	Sensitivity	Molecular Ion	MS/MS-Transitions	Ren	nark Ref	fei	
	ESI(-)	+++	[M-H]-	357>244 359>246 359>	244		~	
	ESI(+)	++	[M+H]+	359>323 359>140 361>	140			
							~	
	<					>		

13

http://www.eurl-pesticides.eu/userfiles/file/EurlSRM/meth_QuPPe-PO_EurlSRM.pdf

QuPPe Method Version 9.3, August 2017

5.7. LC-MS/MS Measurement

Any suitable LC-MS/MS conditions may be used. Some exemplary instrument measurement conditions are given below. An overview of LC-MS/MS conditions proposed within this document is given in Table 3: **Table 3:** Overview and scope of the methods proposed within this document for the QuPPe method:

	M 1.1	M 1.2	M 1.3	M 1.4	M 2	M 3	M 4.1	M 4.2	M 5	M 6	M 7	M8	<mark>M 9</mark>
ESI-mode	Neg.	Neg.	Neg.	Neg.	Neg.	Pos.	Pos.	Pos.	Pos.	Pos.	Pos.	Pos.	Neg.
Separation princip- le	Anion Exch.	Anion Exch.	Carbon	Carbon	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	HILIC	Carbon	HILIC
Column type	AS 11	AS 11- HC	Hyper- carb	Hyper- carb	Obe- lisc-R	Obe- lisc-R	Obe- lisc-R	BEH- Amide	PFP	Obe- lisc-R	Trini- ty P1	Hyper- carb	Trinity P1
NEGATIVE MODE													
Ethephon	✓	✓	 Image: A second s	NT	NT	NT	NT	NT	NT	NT	-	NT	NT
HEPA	✓	✓	×	NT	NT	NT	NT	NT	NT	NT	-	NT	NT
Glufosinate	✓	✓	×	NT	NT	NT	NT	NT	NT	NT	-	NT	NT
N-Acetyl-glufosinate	✓	✓	 Image: A set of the set of the	NT	NT	NT	NT	NT	NT	NT	-	NT	NT
MPPA	<i>✓</i>	\checkmark	\checkmark	NT	NT	NT	NT	NT	NT	NT	-	NT	NT
Glyphosate	✓	✓	~	NT	NT	NT	NT	NT	NT	NT	-	NT	NT
AMPA	✓	✓	 Image: A set of the set of the	NT	NT	NT	NT	NT	NT	NT	-	NT	NT
Phosphonic acid	(🗸)	(*/)		✓	NT	NT	NT	NT	NT	NT	-	NT	NT
N-Acetyl-AMPA	NT	✓	 ✓ 	NT	NT	NT	NT	NT	NT	NT	-	NT	NT
Fosetyl-Al	-	✓	×	NT	~	NT	NT	NT	NT	NT	√*	NT	NT
Maleic hydrazide	-	-	×	NT	~	NT	NT	NT	NT	NT	√*	NT	NT
Perchlorate	NT	-	 Image: A set of the set of the	 ✓ 	✓	NT	NT	NT	NT	NT	√*	NT	NT
Chlorate	NT	-	 Image: A second s	✓	NT	NT	NT	NT	NT	NT	√*	NT	NT
Bialaphos	NT	NT	 ✓ 	NT	NT	NT	NT	NT	NT	NT	-	NT	NT
Cyanuric acid	NT	NT	 ✓ 	NT	NT	NT	NT	NT	NT	NT	√*	NT	NT
Bromide	NT	NT	-	 ✓ 	NT	NT	NT	NT	NT	NT	NT	NT	NT
Bromate	NT	NT	(√)	 ✓ 	NT	NT	NT	NT	NT	NT	NT	NT	NT
N-Acetylglyphosate	NT	NT	 Image: A second s	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Difluoroacetic acid	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	✓
Trifluoroacetic acid	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	✓

Outline

Trends in instrumental analysis

HBM meets food safety analysis: What can we learn from mycotoxin/pesticide residue analysis in food or should at least know about....

- Laboratory networks

Harmonisation of analytical procedures/performance criteria

LOD/LOQ: sense and nonsense

Guidance documents / regulations

Analytical procedures/performance criteria

General:

Eurachem 2nd Ed, 2014, The Fitness for Purpose of Analytical Methods, A Laboratory Guide to Method Validation and Related Topics <u>https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf</u>

Pharma:

EMA Guideline on bioanalytical method validation (EMEA/CHMP/EWP/192217/2009 Rev.1 Corr.2**) https://www.ema.europa.eu/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf

FDA (US) CDER/CVM Bioanalytical method validation, guidance for industry (May 2018) https://www.fda.gov/downloads/drugs/guidances/ucm070107.Pdf

Which guidance are you using??

16

<u>Food/Agro:</u> Animal products (veterinary drug residues) 2002/657/EC Mycotoxins

Pesticides $\int_{}^{}$

next slides

EU documents on analysis methods/criteria food

MYCOTOXINS

Regulation 2017/625 'Official Control Regulation' (OCR) on official controls and other official activities performed to ensure the application of food and feed law

Standardised methods in the EU ('European Norm', EN; 'CEN methods')

Regulation 401/2006 on methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs

Regulation 152/2009 laying down the methods of sampling and analysis for the official control of feed

Guidance Identification criteria SANTE/12089/2016 https://ec.europa.eu/food/sites/food/files/safety/docs/cs_contaminants_sampling_guid-doc-ident-mycotoxins.pdf

Guidance LOD/LOQ determination JRC, 2016, DOI: 10.2787/8931

http://publications.jrc.ec.europa.eu/repository/bitstream/JRC102946/eur%2028099%20en_lod%20loq%20guidance%20document.pdf

EU documents on analysis methods/criteria food

PESTICIDES

Regulation 2017/625 'Official Control Regulation' (OCR) on official controls and other official activities performed to ensure the application of food and feed law

Standardised methods in the EU ('European Norm', EN; 'CEN methods')

SANCO/825/00 rev. 8.1 (2010)

Guidance document on pesticide residue analytical methods Requirements for methods submitted by Agrochem industry during (re)registration of pesticides, applies to food/feed, water, soil, blood, serum, plasma or urine. https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides ppp app-proc guide res post-reg-cont-monitor.pdf

SANTE/11813/2017

Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed <u>https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf</u>

HMB meets Food safety

Pesticide guidance document AQC, validation, performance criteria

First established 1997 to harmonise Validation and Analytical Quality Control procedures of pesticide residue analysis in food and feed.

Re-evaluated every 2 years Revised where necessary

Current version SANTE/11813/2017 Next revision: end 2019

SANTE/11813/2017 Calibration/quantification

Testing/replacing analytical reference standards Old vs new: ≥5 replicates alternate injections each Difference of mean old vs new should be ≤10% Take RSD of mean into account (≤10%)

Difference old/new = $\frac{\text{mean } R_{\text{new}} - \text{mean } R_{\text{old}}}{\text{mean } R_{\text{new}}} \times 100\%$

Injection response 10 ng/ml old-1 1235 10 ng/ml new-1 1360 10 ng/ml old-2 1131 10 ng/ml new-2 1560 10 ng/ml old-3 1456 10 ng/ml new-3 1430 10 ng/ml old-4 1365 10 ng/ml new-4 1430 10 ng/ml old-5 1378 10 ng/ml new-5 1365 RSD average old standard 1313 9.8% 5.6% new standard 1429 difference 8.1%

SANTE/11813/2017 Calibration/quantification

Matrix effects*

Need to be addressed in calibration when >20%

Difference in response of analyte dissolved in solvent (calibrant) and analyte dissolved in final sample extract => affects quantification

RIKILT, Wageningen, November 22nd 2018, part of 2nd HBM4EU Training School, Nijmegen, November 19th-23rd,

Cause:

LC-MS(/MS): ionisation issue Competition for charge in ESI Mostly suppression, sometimes enhancement

GC

Active sites in injector (liner) More pronounced for more polar analytes (-OH, -NH, phosphates, ...) Mostly enhancement

*Reading recommendation: Panuwet et al, (2016) Critical Reviews in Analytical chemistry, 46:2,93-105

LC-MS(/MS), a closer look:

RIKILT, Wageningen, November 22nd 2018, part of 2nd HBM4EU Training School, Nijmegen, November 19th-23rd, 2018

MS/MS response of pesticide Injection of blank matrix post-column T-infusion of the pesticide

Strong suppression typically corresponds to high full scan TIC signals

Courtesy Lutz Alder, retired from BfR

LC-MS(/MS), a closer look: every urine is different....

24

Matrix effects

LC-MS(/MS), a closer look:

Response of standard prepared in urine extract* vs standard prepared in solvent 5 replicate injections of same concentration

Same urine, hardly any suppression for Teb-OH, very strong suppression for Carb-OH

Urine extract*: Enzymatic deconjugation "QuEChERS" extraction (ACN partitioning) Evaporative concentration ACN; reconstitution MeOH/water

LC-MS(/MS), a closer look:

Different urines, different matrix effects Variation in absolute response of biomarker in individual urine extracts

2nd HBM4EU Training School, Nijmegen, November 19th-23rd, 2018

Factor 5!

26

LC-MS(/MS), a closer look:

Different urines, different matrix effects Variation in absolute response of biomarker in individual urine extracts

Intermezzo

LC-MS(/MS), a closer look:

Parameters affecting matrix effects:

Matrix: amount of matrix injected into LC-MS

urine (every urine is different) sample prep

- dilute&shoot \leftrightarrow IAC
- extraction/cleanup
- urine equivalent in extract injection volume

Chromatographic separation

Analyte

LC-MS Instrument less for nano/µ-LC? Source design? ESI more matrix effects than APCI ESI pos more than ESI neg

Post-column Infusion of 50 pesticides

RIKILT, Wageningen, November 22nd 2018, part of 2nd HBM4EU Training School, Nijmegen, November 19th-23rd, 2018

Stahnke et al, Mass. Spectrom. 2012, 47, 875–884 Stahnke et al, Anal Chem. 2012 84(3):1474-82.

20

10

Time, min1

LC-MS(/MS), a closer look:

How to deal with matrix effects?

<u>1. Reduce matrix effects:</u> Keep amount of matrix injected low inject low urine equivalent dilution to go from 80% suppression to <20%, 25-100x dilution needed*</p>

Cleanup

Focus on removal of matrix that co-elutes with the biomarker (generic C18 cleanup or LLE beneficial for avoiding instrument contamination but may not necessarily be very effective for reducing matrix effects) \Rightarrow Dedicated cleanup procedures \Rightarrow con: multiple methods to cover multiple biomarkers

LC separation: separate target biomarker(s) from major matrix peaks \Rightarrow con: longer chromatographic run time

RIKILT, Wageningen, November 22nd 2018, part of 2nd HBM4EU Training School, Nijmegen, November 19th-23rd, 2018

*Stahnke et al, Anal Chem. 2012 84(3):1474-82.

LC-MS(/MS), a closer look:

How to deal with matrix effects?

2. Compensate for matrix effects:

Use **isotopically labelled internal standard** (ILIS) of biomarker Options: add to urine before sample prep or to final extract Identical phys/chem behaviour, needs to co-elute exactly, requires the isotopically labelled analogue for each biomarker \Rightarrow requirement: availability of labelled biomarkers

Matrix-matched standards?

Options: add to urine before sample prep or add to final extract Prepare cal standards in urine/extract \Rightarrow Which urine? Differences in matrix effects for different urines

Standard addition

Options: add to urine before sample prep or add to aliquot(s) of final extractSingle level (@2-10x sample concentration) \Rightarrow requires pre-analysis to estimate conc.Multi-level \Rightarrow requires ≥ 4 measurements/sample

GC-MS(/MS), a closer look:

How to deal with matrix effects?

1. Reduce matrix effects: low urine equivalent/ml extract, cleanup

<u>2. Compensate for matrix effects</u>:Use **isotopically labelled internal standard** (ILIS) of biomarkerTypically in blank urine (matrix often improves response/peak shape in GC)

Matrix-matched standards GC-matrix effects between urines often similar

Use of **'analyte protectants'** Anastassiades et al, J. Chromatogr. A, 1015 (2003) 163–184.

Standard addition Only if none of the above works

Calibration/quantification?

Calibrants in: solvent? blank urine (what if not available?) synthetic urine (surine) your procedures/ experiences?

SANTE/11813/2017 Calibration/quantification

Linearity: Criteria? R² (coefficient of determination)?

Х	Y	120,000		BCC					
ng/mL	area	100.000	y = 890.73x + 2709.6	ng/m	l dev	iation			
3.1	3 <i>,</i> 805	100,000	R ² = 0.9968		1.23	-60%			
5.1	5 <i>,</i> 947	80,000 ല്ല		_	3.63	-29%			
7.2	8,205	suod 60,000		_	6.17	-14%			
10.2	11,502	92 40.000			9.87	-3%			
30.7	31,004	40,000		BCC weig	hting 1/x	3%			
51.2	51,779	20,000		ng/ml	deviation	n 8%			
71.7	68,903	0		3.6	159	6 4%			
92.2	86,034	(0 20 40 60 80 100 120	5.6	109	6 1%			
123.1	108,602		ng/m	7.8	89	6 -3%			
D				10.9	7%	6			
Do not	over-rely o	on linear r	egression R ²	29.7	-39	6			
Key req	urement:	back-calci	ulated conc. should not deviate >±20%	49.6	-39	6			
Check v	Check various options, linear w/wo weighting (1/x), etc 66.1 -8%								
				82.6	-109	6			
				104.2	-15%	6			
RIKILT, Wa 2 nd HBM4	RIKILT, Wageningen, November 22 nd 2018, part of 32 2 nd HBM4EU Training School, Nijmegen, November 19 th -23 rd , 2018								

HMB meets Food safety

Identification in chromatography – mass spectrometry

your procedures/ experiences?

SANTE/11813/2017 identification

Chromatography + Mass spectrometry required for identification t_r requirement: ±0.1 min from (average) cal. stds

MS detector/Characteristics			Requirements for identification			
Resolution	Typical systems (examples)	Acquisition	minimum number of ions	other		
	Single MS quadrupole, ion trap, TOF	full scan, limited m/z range, SIM	3 ions	S/N ≥ 3 ^{a)} Analyte peaks from both product ions in the extracted ion chromatograms must		
Unit mass resolution	MS/MS triple quadrupole, ion trap, Q-trap, Q-TOF, Q-Orbitrap	selected or multiple reaction monitoring (SRM, MRM), mass resolution for precursor-ion isolation equal to or better than unit mass resolution	2 product ions	fully overlap. Ion ratio from sample extracts should be within ±30% (relative) of average of calibration standards from same sequence	De ne du	
Accurate mass measurement	High resolution MS: (Q-)TOF (Q-)Orbitrap FT-ICR-MS sector MS	full scan, limited m/z range, SIM, fragmentation with or without precursor-ion selection, or combinations thereof	2 ions with mass accuracy ≤ 5 ppm¤. b, c)	S/N ≥ 3 ^{a)} Analyte peaks from precursor and/or product ion(s) in the extracted ion chromatograms must fully overlap.		

Table 4. Identification requirements for different MS techniques²

^{a)} preferably including the molecular ion, (de)protonated molecule or adduct ion

b) including at least one fragment ion

 $^{\circ)}$ < 1 mDa for m/z < 200

^{d)} in case noise is absent, a signal should be present in at least 5 subsequent scans

Default criteria, needs to be verified during validation

SANTE/11813/2017 rationale for the default ±30% ion ratio criterion

LC-MS/MS: deviation of ion ratio in samples vs reference ion ratio in solvent standards for different matrices, different concentrations of >100 pesticides

 \Rightarrow Ion ratio is typically within ±30% as long as decent signal is obtained for both ions Ion ratio is not depending on concentration, ion ratio value, ...

Mol et al, 2015, Analytica Chimica Acta. 873:1–13. Berendsen et al, 2016, Drug Testing and Analysis. 8:477–490

SANTE/11813/2017 identification

Establish reference ion ratio for the sequence

- Based on cal. standards (solvent or urine if interference free)
- Discard responses with poor S/N
- Only use responses within linear range

	Trifloxystrobin-acid					
		quantifier	qualifier			
injection	ng/ml urine	395>186	395>148	ion ratio		
1	0	1091	516			
2	0.05	13580	6542	0.482		
3	0.1	25494	11912	0.467		
4	0.5	118922	59000	0.496		
5	1	250027	121722	0.487		
6	2	450233	222327	0.494		
7	5	1141957	566861	0.496		
8	10	2738491	1343794	0.491		
22	2	495599	242168	0.489		
35	2	516465	255154	0.494		
48	2	531695	259670	0.488		
61	2	535061	261478	0.489		
76	2	545544	267233	0.490		
			average	0.489		
			RSD	2%		
	toleran	ce window	min -30%	0.342		
			max +30%	0.635		

SANTE/11813/2017 validation

Develop or implement method Check sensitivity/selectivity; matrix effects, choose quantification approach

Two step validation:

1. Basic initial validation (repeatability conditions) Default: 2 blanks, 5 replicates @ anticipated LOQ, 5 rep's at 10xLOQ or higher if expected

Validation set = 5-6 <u>different*</u> urines

Urine A, B, C, D, E, F; one replicate each, together N=6 for each level

Check selectivity/interferences
 Check linearity (matrix effects)
 Determine average recovery and RSD_r
 Check compliance identification criteria
 Check against criteria => pass or fail

*m/f, creatinine, full scan TIC profiles; pre-check for background levels

SANTE/11813/2017 validation

2. On-going validation

With each analysis batch, include QC samples [how many replicates/levels?]

- Samples spiked at LOQ and higher level(s) conjugates usually not available
- Positive sample(s) aliquoted, stored in the freezer for this purpose contains conjugates!

Compile in database or Shewhart chart

Calculate average recovery/trueness and intermediate precision (RSD_{wl})

Other:

Storage stability Freeze & thaw stability

[Your procedures?]

HMB meets Food safety

Validation criteria Pharma (FMA):	Parameter	What/how	Criterion	Cross reference to AQC document
±15% LLOQ ±20%	Sþnsitivity/linearity	Linearity check from five levels	Deviation of back- calculated concentration from true concentration ≤±20%	C14-C19
	Matrix effect	Comparison of response from solvent standards and matrix-matched standards	*	C22-C24
	LOQ	Lowest spike level meeting the method performance criteria for trueness and precision	≤MRL	G6
≤20% LLOQ	Specificity	Response in reagent blank and blank control samples	≤30% of RL	C42
85-115%, LLOQ 80-120%	Trueness (bias)	Average recovery for each spike level tested	70-120%	G3,G6
Γ	Precision (RSDr)	Repeatability RSD, for each spike leveltested	≤ 20%	G3, G6
≤15%, ≤20% LLOQ —	Precision (RSD _{wR})	Within-laboratory reproducibility, derived from on-going method validation / verification	≤ 20%	G3, G6
	Robustness	Average recovery and RSD _{wR} derived from on-going method validation / verification	See above	G6, <mark>C</mark> 40-C44
	lon ratio	Check compliance with identification requirements for MS techniques	Table 4	Section D
	Retention time		±0.1 min.	D2

Outline

Trends in instrumental analysis

HBM meets food safety analysis:

What can we learn from mycotoxin/pesticide residue analysis in food or should at least know about....

- Laboratory networks
- Harmonisation of analytical procedures/performance criteria

LOD/LOQ: sense and nonsense

LOD/LOQ

LOD: limit of detection LOQ: limit of quantification LLOQ: lower limit of quantification (pharma) Decision limit CCα and Detection capability CCβ LOI: limit of identification MDL: method detection limit

Various definitions, various ways of determination

[Your procedures?]

<u>Statistical approaches</u> IUPAC, ISO 11843, DIN 32645,

<u>Practical approaches</u> S/N approach (LOD: S/N = 3; LOQ: S/N=5?, 6?, 10?) Lowest validated level meeting performance criteria

Eurachem ('3s' approach)

Example LC-MS/MS analysis

<u>What to do</u>

- 10 replicate measurement of test samples with low concentration of analyte \Rightarrow spike 10 different <u>blank</u> urine samples

Calibration curve (spike to sample!)5 points, equidistant, in the range LOD-10xLOD

<u>Issue</u>

10x 1 urine vs <u>10 different urines</u> = close to LOD => range finding needed

which urine sample??

Determine concentration biomarker using the calibration curve Determine the standard deviation s₀ of the concentrations obtained

SD to be used for LOD determination = $s'_0 = s_0$ in case of single analysis of each sample

LOD = $3 \times s'_{0}$ LOQ = $10 \times s'_{0}$ (or 6x or 5x?)

Example LOD/LOQ

HMB meets Food safety

43

Aflatoxin B1 spiked @0.26 ng/g (in wheat)

Aflatoxin B1 spiked @0.26 ng/g (in wheat)

	ng/g	area
calibrant-1	0.20	5284
calibrant-2	0.40	10355
calibrant-3	0.60	19595
calibrant-4	0.80	20989
calibrant-5	1.00	30883
slope		30916
intercept		-1128
R^2		0.966

Note:

In case of varying matrix effects the LOD may depend on sample used for calibration (slope)

	area	ng/g
sample-1	8034	0.296
sample-2	8358	0.307
sample-3	7303	0.273
sample-4	8008	0.296
sample-5	7554	0.281
sample-6	8049	0.297
sample-7	7382	0.275
sample-8	7627	0.283
sample-9	7981	0.295
sample-10	6574	0.249
average		0.285
SD=S'0		0.017

LOD = 3*0.017= 0.05 ng/g LOQ = 10*0.017 = 0.17 ng/g

JRC guidance document

LOD/LOQ

3 methods

<u>'Blank samples' (similar to Eurachem)</u> 10 pseudo blank samples (+5 cals) 5 cals equidistant ≤10xLOD

<u>'Paired observations'</u> 10 pseudo blank samples Same samples + spike 5 cals equidistant ≤10x LOD

<u>'Calibration approach'</u> 5 cals in duplicate, equidistant, ≤10xLOD

<u>3 methods used, 2 times (one month apart)</u> Depending on method and moment LODs obtained differed by factor 2-6 http://publications.jrc.ec.europa.eu/repository/bits tream/JRC102946/eur%2028099%20en lod%20log %20guidance%20document.pdf

> Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food

Calculation aid: http://eurlhm.eu/lod/index.html

Does detection equal identification? LOD/LOQ

S/N approach

LOD/LOQ

47

Zearalenone biomarkers in urine: S/N software S/N human

S/N approach

48

HRMS: no noise..... Example: Q-Orbitrap:

LOD/LOQ

<u>Statistical approaches</u> Not straightforward Laborious, iterative Various options, various outcomes

<u>Practical approaches</u> S/N approach: affected by software/smoothing, matrix-effects

LOD is not a fixed parameter, it varies with method of determination and in time (with LOQ = n*LOD, same applies for LOQ)

Pragmatic solution:

LOQ = lowest concentration for which it has been demonstrated by (on-going) validation that the criteria for trueness/precision and identification are met.

There are LODs, damned LODs, and LODs from statistics*.... so used common sense like:

Odetokun et al J. Chromatogr B, 878 (2010) 2567–2574 DAPs in urine by LC-MS/MS

"2.6.2. Limits of detection

The LOD was defined as <u>three times the standard deviation of the noise at zero</u> <u>concentration (3SO)</u>, where SO was estimated as the y-intercept of a linear regression analysis of a plot of the standard deviation of the three lowest standards versus the expected concentration from 10 runs [22]. Furthermore, the LOD was compared with the results of the calibration standard samples and low-level spiked samples to ensure that the calculated values agreed with the peak observed and that a <u>minimum signal-to-noise</u> <u>ratio of 3</u> was present at these low levels."

Schmidt et al, Anal Bioanal Chem (2013) 405:2019–2029 EDCs incl. TCPy in urine by GC-MS/MS)

"Limits of detection (LOD) and limits of quantification (LOQ) were determined by means of a seven equidistant point calibration in pooled urine, according to guideline DIN 32 645. Additionally, the LODs were calculated using a <u>peak-to peak height signal to noise ratio of</u> <u>3:1</u>, at the lowest calibration concentration of each analyte"

*Rephrased from "There are lies, damned lies, and statistics" Quote attributed to Benjamin Disraeli, 19th century British Prime Minister

Contacts

Hans Mol <u>hans.mol@wur.nl</u> RIKILT – Wageningen University & Research

Speaker's information

Hans Mol is senior scientist at the department of Natural Toxins and Pesticides, RIKILT, Wageningen, The Netherlands. He is an analytical chemist with more than 20 years of experience in determination of pesticides, mycotoxins, and their metabolites in food, environmental and biological samples.

In HBM4EU he is involved in WP9 (9.4 Quality Assurance, organisation of ICI/EQUAS, 9.1 biomarker/method inventory)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 733032.