

science and policy for a healthy future General introduction to mycotoxin biomarkers

Arnau Vidal, Liesel Claeys, Sarah De Saeger & Marthe De Boevre 2nd HBM4EU Training School 2018

1. Biomarkers introduction

- 2. Biomarkers determination
- 3. Mycotoxin biomarkers
- 4. Conclusions

Summary

Mycotoxin Biomarkers of Exposure: A Comprehensive Review

Arnau Vidal (D), Marcel Mengelers, Shupeng Yang, Sarah De Saeger, and Marthe De Boevre

Abstract: To date, the use of biomarkers has become generally accepted. Biomarker-driven research has been proposed as a successful method to assess the exposure to xenobiotics by using concentrations of the parent compounds and/or metabolites in biological matrices such as urine or blood. However, the identification and validation of biomarkers of exposure remain a challenge. Recent advances in high-resolution mass spectrometry along with new analytical (post-acquisition data-mining) techniques will improve the quality and output of the biomarker identification process. Chronic or even acute exposure to mycotoxins remains a daily fact, and therefore it is crucial that the mycotoxins' metabolism is unravelled so more knowledge on biomarkers in humans and animals is acquired. This review aims to provide the scientific community with a comprehensive overview of reported *in vitro* and *in vivo* mycotoxin metabolism studies in relation to biomarkers of exposure for deoxynivalenol, nivalenol, fusarenon-X, T-2 toxin, diacetoxyscirpenol, ochratoxin A, citrinin, fumonisins, zearalenone, aflatoxins, and sterigmatocystin.

Keywords: biomarkers, exposure, human, in vitro, in vivo, metabolism, mycotoxin

•<u>Biomarker</u>: biological marker; a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.

- <u>Biomarker of exposure</u>: a characteristic to assess the exposure of xenobiotics of individuals through an estimation of their metabolites in biological fluids.
- Biomarker of effect: a characteristic measured through a biochemical, physiological, behavioural, or other alternation within an organism that, depending upon the magnitude, can be recognized as associated with an established or possible health impairment or disease.
- ✓ Biomarker of susceptibility: an indicator of an inherent or acquired ability of an organism to respond to the challenge of exposure to a specific xenobiotic substance.

•Biomarker-driven research to assess the exposure to xenobiotics:

- Based on concentrations of the parent compounds.
- Based on concentrations of the metabolites.

•Identification and **Validation** of biomarkers of exposure.

Overview

Biological fluids to analyze biomarkers:

- Urine
- Blood and/or plasma/serum
- Feces
- Breast milk
- Hair

Overview

BIOMARKERS: DETERMINATION

• Mycotoxin screening methods

• Confirmatory methods

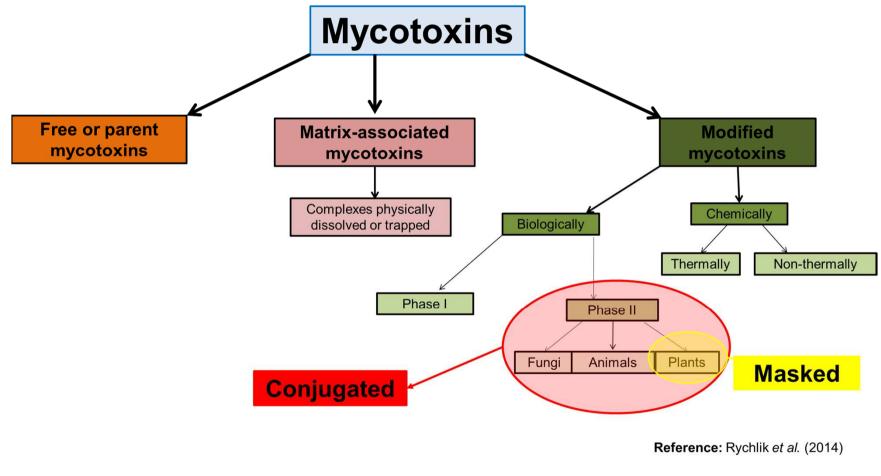
Mycotoxin biomarker screening methods

- Quantitative
 - ✓ Enzyme-Linked ImmunoSorbent Assay (ELISA)
 - ✓ Fluorescent Labelled ImmunoSorbent Assay (FLISA)
 - ✓ Fluorescent Polarization ImmunoAssay (FPIA)
 - ✓ Biosensors
- Qualitative/Semi-quantitative
 - ✓ Membrane/paper tests
 - o Lateral flow/dipstick

Confirmatory methods

- Liquid chromatography:
 - ✓ Mass-spectrometry (MS)
 - o Multi-mycotoxins
 - o Low limit of detection
 - ✓ High Resolution MS (HRMS)
 - Identify and detect new biomarkers structural elucidation.
 - o Untargeted analysis or screening.
 - Screening method to simultaneously detect a large number of compounds.

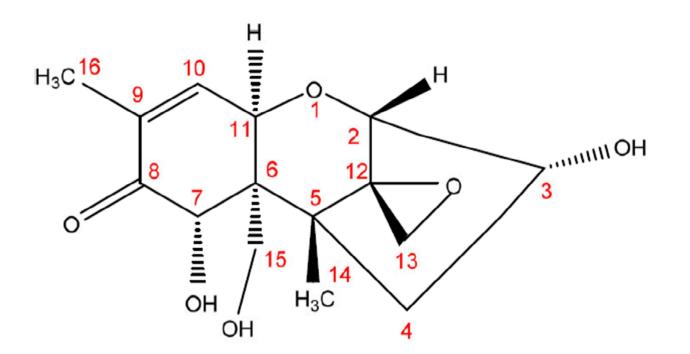
Overview


Mycotoxins: Toxic fungal secondary metabolites

- Contaminate agricultural commodities during cultivation, harvesting, transport, processing and storage.
- Most important producing genera:
 - ✓ Aspergillus
 - ✓ Fusarium
 - ✓ Penicillium

Overview

Mycotoxins: classification

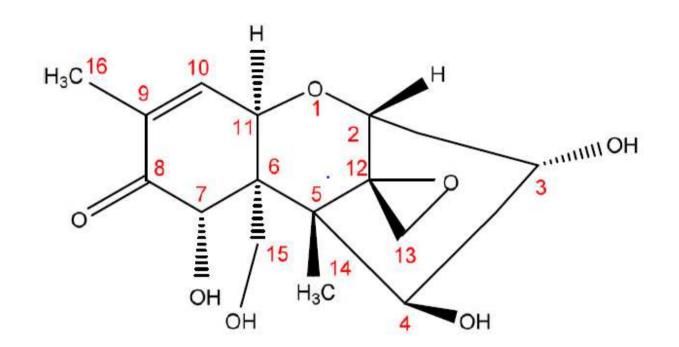


- •International Agency for Research on Cancer (IARC)
- •Classification according to evidence of carcinogenicity to humans

Group	Classification	Mycotoxins
1	Carcinogenic to humans	aflatoxins
2A	Probably carcinogenic to humans	1
2B	Possibly carcinogenic to humans	ochratoxin A, sterigmatocystin and fumonisins
3	Not classifiable as to its carcinogenicity to humans	deoxynivalenol, nivalenol, T-2 toxin, diacetoxyscirpenol, zearalenone, citrinin and fusarenon-X
4	Probably not carcinogenic to humans	1

Deoxynivalenol (DON)

- Produced by *Fusarium* species and type B trichothecene.
- Highly common in cereals and cereal-based products (bread, pasta, beer, ...).
- Group 3 carcinogen.
- •Modified or masked DON:
 - Deoxynivalenol-3-glucoside (DON-3-glucoside): even more present than
 DON after food processing.
 - ✓ 3- and 15-acetyldeoxynivalenol (3- and 15-ADON).


- •DON is fast and mainly excreted by urine:
 - ✓ DON glucuronides form are the main metabolites (DON-15-glucuronide and DON-3-glucuronide) followed by DON.
 - \checkmark Next presentation on human intervention trial.
- •Deepoxy-DON in feces

•Animals produce more **DON metabolites** than humans

Metabolite	Abbreviation	Composition	Species	Method	Metabolic Phase	Ref
10-deepoxy-deoxynivalenol-1-sulfonate	10-DOM-1-sulfonate	C15H21O8S	Rats	In vivo: urine		(Wan et al., 2014)
Deepoxy deoxynivalenol	DOM-1	C15H20O5	Rats	In vivo: urine & feces	-	(Nagl et al., 2012)
		-1320-3	Cows	In vivo: urine & feces		Cote, Dahlem, Yoshizawa, Swanson, &
			Swines	In vivo: urine & feces		Buck, 1986)
			Humans	In vivo: urine		(Nagl et al., 2014)
						(Vidal et al., 2018)
Deepoxy-deoxynivalenol-15-glucuronide	DOM-15-glucuronide	C ₂₁ H ₂₈ O ₁₁	Humans, rats, swines,	In vivo: urine	1	(Schwartz-Zìmmermann et al., 2017)
	-		COWS			,
Deepoxy-deoxynivalenol-3-glucuronide	DOM-3-glucuronide	C ₂₁ H ₂₈ O ₁₁	Humans, rats, cows	In vivo: urine	1	(Schwartz-Zimmermann et al., 2017)
Deoxynivalenol sulfonate 1	DON S1	C15H19O9S	Rats	In vivo: feces	1	(Schwartz-Zimmermann et al., 2017)
Deoxynivalenol sulfonate 2	DON S2	C15H19O9S	Rats	In vivo: feces	1	(Schwartz-Zimmermann et al., 2017)
Deoxynivalenol sulfonate 3	DON S3	C15H19O9S	Rats	In vivo: feces	II.	(Schwartz-Zimmermann et al., 2017)
Deoxynivalenol-15-glucuronide	DON-15-glucuronide	C21H28O12	Humans	In vivo: urine	1	(Heyndrickx et al., 2015)
, ,	2		Humans	In vitro: liver		(Schwartz-Zimmermann et al., 2017)
Deoxynivalenol-15-sulfate	DON-15-sulfate	C12H19O9S	Rats	In vivo: urine	II.	(Pestka et al., 2017)
			Rats	In vitro: liver		
Deoxynivalenol-3-glucuronide	DON-3-glucuronide	C ₂₁ H ₂₈ O ₁₂	Humans	In vivo: urine	II	(Heyndrickx et al., 2015;
			Rats, swines, cows,	In vitro: liver		Schwartz-Zimmermann et al., 2017)
			humans			Schwartz-Zimmermann et al. (2017) '
Deoxynivalenol-3-sulfate	DON-3-sulfate	C15H19OgS	Humans	In vivo: urine	11	(Warth et al., 2016)
			Chickens	In vivo: urine		(Wan et al., 2014)
			Chickens & turkeys	In vivo: urine		(Schwartz-Żimmermann et al., 2015)
		TO BEAT DOX IN SUCC	Rats	In vivo: urine		(Pestka et al., 2017)
Deoxynivalenol-8,15-hemiketal-8-	DON-8,15-hemiketal-8-	C21 H29 O13	Rats	In vitro: liver	11	(Uhlig, Ivanova, & Fæste, 2016)
glucuronide	glucuronide		Rats	In vitro: liver		(Schwartz-Zimmermann et al., 2017;
• Martin I and a second of the state of the second s	DOW	C 11 0	Rats	In vivo: urine		Uhlig, Ivanova, & Fæste, 2013)
Iso-deepoxydeoxynivalenol	Iso-DOM	C15H20O5	Bacterial strain BBSH	In vitro: incubation		(Fuchs et al., 2002)
Isa daanayyi daayyiniyalanal 15	iso-DOM-15-glucuronide	C 11 0	797 Rats	In vitro: liver	11	(Schwartz-Zimmermann et al., 2017)
Iso-deepoxy-deoxynivalenol-15- glucuronide	ISO-DOM-15-gluculoillue	C21H30O11	Humans	In vitro: liver	11	(Schwartz-Zimmermann et al., 2017)
Iso-deepoxy	Iso-DOM-3-glucuronide	C21H30O11	Rats & cows	In vivo: urine		(Uhlig et al., 2016)
deoxynivalenol-3-glucuronide	Iso-DOM-S-gluculonide	C21H30U11	nats & cows	in vivo. unne		(Dinig et al., 2010)
Iso-deepoxy-deoxynivalenol-8-	iso-DOM-8-glucuronide	C21H30O11	Rats	In vitro: liver	11	(Schwartz-Zimmermann et al., 2017)
glucuronide	150-DOM-O-gluculoillue	C211130011	11013	m visio, nvei	11	(Solwarz-zimmermann et al., 2017)
Iso-deoxynivalenol	Iso-DON	C15H20O6	Rats	In vivo: urine		(Schwartz-Zimmermann et al., 2017)
Iso-deoxynivalenol-15-glucuronide	iso-DON-15-glucuronide	C21H30O11	Rats & humans	In vitro: liver	11	(Schwartz-Zimmermann et al., 2017)
Iso-deoxynivalenol-3-glucuronide	iso-DON-3-glucuronide	C ₂₁ H ₃₀ O ₁₁	Rats	In vivo: urine	ii.	(Schwartz-Zimmermann et al., 2017)
(previously	iso-bola-s-gluculonide	0211130011	Rats	In vitro: liver	-11	permanz-zimmermann er al, 2017)
deoxynivalenol-7-glucuronide)			ind C3	0.0000000000000000000000000000000000000		
Iso-deoxynivalenol-8-alucuronide	iso-DON-8-alucuronide	C21H30O11	Rats	In vitro: liver	11.	(Schwartz-Zimmermann et al., 2017)
is acadmining o gracatoride	iso bon o giucaronide	ez1130 e11		are every little	Still	(Sandar Linnenani Cear, 2017)

Nivalenol

Nivalenol (NIV)

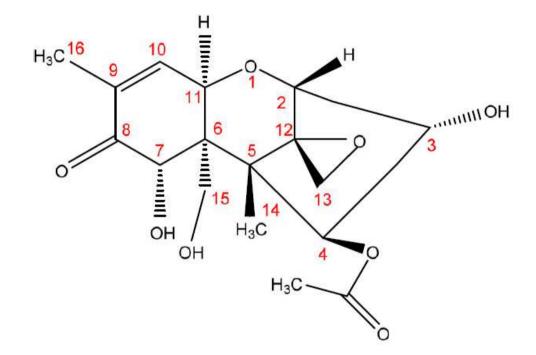
•Produced by *F. cerealis, F. poae, F. graminearum, and F. culmorum and* type B trichothecene.

•Observed in cereals, especially in wheat products.

•Group 3 carcinogen.

•It has demonstrated immuno-, hemato-, myelotoxicity, and developmental and reproductive toxicity.

- •The metabolism of NIV has been scarcely investigated.
- •A study was not able to detect NIV in human urine.


•The non-detection of NIV could be assigned to the fact that NIV was **probably** predominantly excreted in the **glucuronidated form**, similar to DON.

•Deepoxy-NIV is a predominant compound in feces

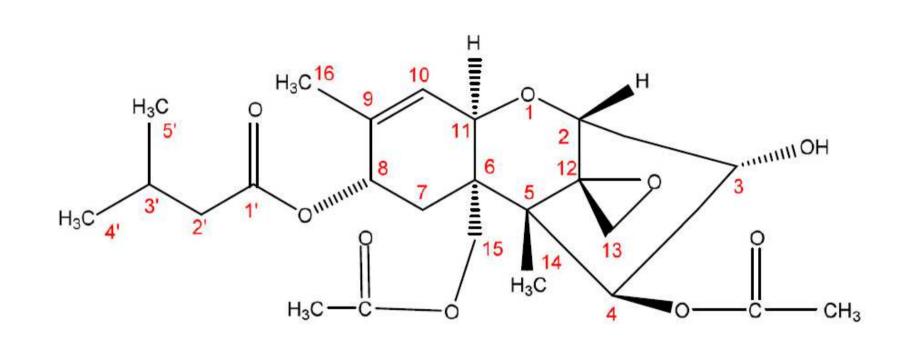
(Hedman & Pettersson, 1997).

Fusarenon-X

Fusarenon-X (FUS-X)

•Produced by different *Fusarium species and* type B trichothecene.

- •Mainly found in cereals and co-occurs with DON and NIV.
- •Group 3 carcinogen.
- •Exerts intestinal inflammation, inhibits protein synthesis, induces apoptosis, and alters genetic material.


•FUS-X is highly converted to NIV in liver and kidney.

•Focus on quantification of NIV both in urine and plasma.

Metabolite	Abbreviation	Composition	Species	Method	Metabolic Phase	Ref
Nivalenol	NIV	C ₁₅ H ₂₀ O ₇	Duck Broiler Rabit Mice Pig Pig Mice Broiler Duck	In vitro: liver In vitro: liver In vitro: liver In vitro: liver In vitro: liver In vivo: urine In vivo: urine & feces In vivo: plasma In vivo: plasma	Ĩ	(Poapolathep et al., 2008) (Ohta et al., 1978; Poapolathep et al. 2003) (Saengtienchai et al., 2014) (Poapolathep et al., 2003) (Poapolathep et al., 2008)

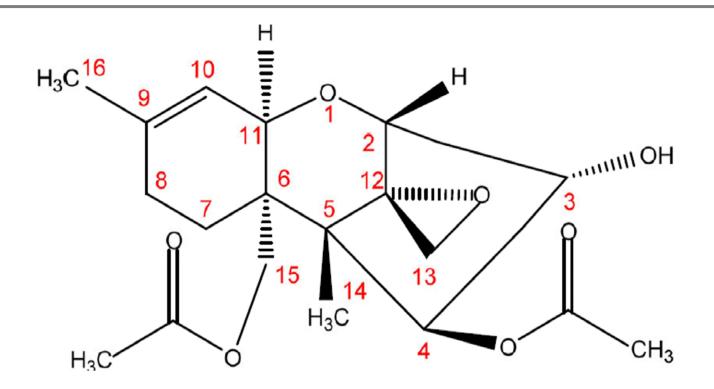
T-2 toxin

T-2 toxin (T-2)

- •Produced by various *Fusarium* type A trichothecene.
- •Detected in cereals and cereal-based products.
- •Group 3 carcinogen.
- •Act as a potent inhibitor of protein synthesis and mitochondrial function; immunosuppressive and cytotoxic effects.
- •HT-2 and T-2-glucoside as modified T-2.
- •JECFA concluded that the toxic effects of T-2 and HT-2 cannot be differentiated.

- HT-2 is the predominant compound during *in vitro* and *in vivo* studies, and should therefore be considered as the main T-2 biomarker in urine and in plasma.
- There are more T-2 metabolites which have not been detected in human urine.
- Differences among animals.

T-2 toxin


Metabolite	Abbreviation	Composition	Species	Method	Metabolic Phase	Ref
15-deacetylneosolaniol	15- deacetylneosolanic	C ₁₇ H ₂₄ O ₇	Rats	In vivo: urine & feces	Ц	Yang, Li, (2013)
15-deacetyl-T-2	15-deacetyl-T-2	C22H32O8	Rats	In vivo: urine & feces	11	Yang, Li, (2013)
3'-7-dihydroxy-HT-2	3'-7-diOH-HT-2	C22H32O10	Rats	In vivo: urine & feces	1	Yang, Li, (2013)
3'-7-dihydroxy-HT-2 (isomer)	3'-7-diOH-HT-2 (isomer)	C ₂₂ H ₃₂ O ₁₀	Rats	In vivo: urine & feces	L	Yang, Li, (2013)
3'-7-dihydroxy-T-2	3'-7-diOH-T-2	C24H34O11	Rats	In vivo: urine & feces	1	Yang, Li, (2013)
3'-hydroxy-9-hydroxy-T-	3'-0H-9-0H-T-2	C ₂₄ H ₃₆ O ₁₁	Rats	In vivo: urine & feces	1	Yang, Li, (2013)
3'-hydroxy-T-2- glucoside	3'-OH-T-2- glucoside	C ₃₀ H ₄₄ O ₁₅	Rats Human	In vitro: liver In vitro: liver	1	Yang, S., Van Poucke, C., (2017)
3-4-dihydroxy-T-2	3',4'-di-OH-T-2	C22H32O8	Chickens	In vivo: feces & bile	1	Yang, S., De Boevre, M. (2017)
3-4-dihydroxy-T-2 (isomer)	3',4'-di-OH-T-2 (isomer)	C ₂₂ H ₃₂ O ₈	Chickens	In vivo: feces & bile	i	Yang, S., De Boevre, M. (2017)
3-hydroxy-15-deacetyl- T-2	3-OH-15-deacetyl- T-2	C22H32O9	Rats	In vivo: urine & feces	11	Yang, Li, (2013)
3-hydroxy-HT-2(also known as T-2 triol)	3'-OH-HT-2	C ₂₀ H ₃₀ O ₇	Rats, chickens, swines, goats, cows, humans. Chickens Rats Cows Chickens Humans	<i>In vitro</i> : liver <i>In vivo</i> : feces & bile <i>In vivo</i> : urine & feces <i>In vivo</i> : urine <i>In vivo</i> : plasma <i>In vivo</i> : milk	I.	Yang, S., De Boevre, M. (2017) (Sun et al., 2015) (Rubert et al., 2014) (Yoshizawa, Sakamoto., Ayano, & Mirocha, 1982) (Sun et al., 2015)) (Rubert et al., 2014)
-hydroxy-HT-2-3- sulfate	3'-OH-HT-2 3-SO ₃ H	C ₂₄ H ₃₉ O ₁₁ S	Chickens	In vivo: feces & bile	11	Yang, S., De Boevre, M. (2017
-hydroxy-T-2	3'-OH-T-2	C ₂₄ H ₃₄ O ₁₀	Rats, chickens, swines, goats, cows, humans Chickens Rats Cows		I	Yang, S., De Boevre, M. (2017 Yang, S., De Boevre, M. (2017 Yang, Li, (2013); Yoshizawa, Sakamoto, & Kuwamura, 1985) (Yoshizawa et al., 1982)
-hydroxy-T-2-3-sulfate	3'-0H-T-2 3-SO3H	C ₂₆ H ₄₁ O ₁₂ S	Chickens	In vivo: feces & bile	Ш	Yang, S., De Boevre, M. (2017
'-carboxyl-3'-hydroxy- T-2	4'-COOH-3'-OH-T- 2	C ₁₇ H ₂₄ O ₇	Chickens	In vivo: feces & bile	1	Yang, S., De Boevre, M. (2017
'-carboxyl-3'-hydroxy- T-2 (isomer)	4'-COOH-3'-OH-T- 2 (isomer)	C ₁₇ H ₂₄ O ₇	Chickens	<i>In vivo</i> : feces & bile	I	Yang, S., De Boevre, M. (2017
'-carboxyl-HT-2	4'-COOH-HT-2	C22H32O8	Chickens	In vivo: feces		Yang, S., De Boevre, M. (2017
'-carboxyl-HT-2 (isomer)	4'-COOH-HT-2 (isomer)	C ₂₂ H ₃₂ O ₈	Chickens	In vivo: feces	T	Yang, S., De Boevre, M. (2017

T-2 toxin

4'-hydroxy-T-2- glucoside	4'-OH-T-2- glucoside	C ₃₀ H ₄₄ O ₁₅	Rats Human	In vitro: liver In vitro: liver	I	Yang, S., Van Poucke, C. (2017)
4'-hydroxy-T-2- glucoside (isomer)	4'-OH-T-2- glucoside (isomer)	C ₃₀ H ₄₄ O ₁₅	Rats Human	In vitro: liver In vitro: liver	I	Yang, S., Van Poucke, C. (2017)
4-À-dihydroxy-T-2 4-deacetylneosolaniol	4',À'-di-OH́-T-2 4-deAc-NEO	C ₂₂ H ₃₂ O ₈ C ₁₇ H ₂₄ O ₇	Chickens Rats, chickens, swines, goats, cows, humans Chickens Rats		I II	Yang, S., De Boevre, M. (2017 Yang, S., De Boevre, M. (2017 Yang, S., De Boevre, M. (2017 Yang, Li, (2013)
4-hydroxy-HT-2 4-hydroxy-HT-2 (isomer)	4'-OH-HT-2 4'-OH-HT-2 (isomer)	C ₂₂ H ₃₂ O ₉ C ₂₂ H ₃₂ O ₉	Chickens Chickens	<i>In vivo</i> : feces & bile <i>In vivo</i> : feces & bile	1 1	Yang, S., De Boevre, M. (2017 Yang, S., De Boevre, M. (2017
7-hydroxy-HT-2 7-hydroxy-HT-2 (isomer)	7-0H-HT-2	C ₂₈ H ₄₂ O ₁₄ C ₂₈ H ₄₂ O ₁₄	Rats Rats	<i>In vivo</i> : urine & feces <i>In vivo</i> : urine & feces	1 I	Yang, Li, (2013) Yang, Li, (2013)
9-hydroxyl-T-2 De-epoxy-3',7- dihydroxy-HT-2	9-OH-T-2 De-epoxy-3',7- diOH-HT-2	C ₂₄ H ₃₆ O ₁₀ C ₂₂ H ₃₂ O ₉	Rats Rats	<i>In vivo</i> : urine & feces <i>In vivo</i> : urine & feces	1	Yang, Li, (2013) Yang, Li, (2013)
De-epoxy-3'-hydroxy- HT-2	De-epoxy-3'-OH- HT-2	$C_{22}H_{32}O_8$	Rats	In vivo: urine & feces	2	Yang, Li, (2013)
De-epoxy-3'-hydroxy-T- 2 triol	De-epoxy-3'-OH-T- 2 triol	C ₂₄ H ₃₄ O ₉	Rats	<i>In vivo</i> : urine	-	(Yoshizawa et al., 1985)
De-epoxy-HT-2 HT-2 toxin	De-epoxy-HT-2 HT-2	C ₂₂ H ₃₂ O ₇ C ₂₂ H ₃₂ O ₈	Rats Rats, chickens, swines, goats, cows, humans Chickens Rats Humans	In vivo: urine & feces In vitro: liver In vivo: feces & bile In vivo: urine & feces In vivo: milk & urine	Ĩ	Yang, Li, (2013) Yang, S., De Boevre, M. (2017)Yang, S., VAn Poucke, C. (2017)Yang, Li, (2013)(Rubert et al., 2014) (Rodriguez-Carrasco et al., 2014)
HT-2- <mark>3-</mark> glucuronide	HT-2-3- glucuronide	C ₂₈ H ₄₀ O ₁₄	Rats, chickens, swines, goats, cows, humans Chickens		П	Yang, S., De Boevre, M. (2017 Yang, S., De Boevre, M. (2017
HT-2-4-glucuronide	HT-2-4- glucuronide	C ₂₈ H ₄₀ O ₁₄	Rats, chickens, swines, goats, cows, humans Chickens Humans		11	Yang, S., De Boevre, M. (2017 (Gerding, Cramer, & Humpf, 2014; Gerding et al., 2015 (Gerding et al., 2015)
HT-2-glucoside	HT-2-glucoside	$C_{28}H_{42}O_{13}$	Rats	In vitro: liver	I	Yang, S., Van Poucke, C.

Diacetoxyscirpenol

Diacetoxyscirpenol (DAS)

•Mainly produced by *Fusarium* species type A trichothecene.

•Main food group contributing to the occurrence of 4,15-DAS is cereals, and most reports are on sorghum, wheat, rice, and maize.

•Group 3 carcinogen.

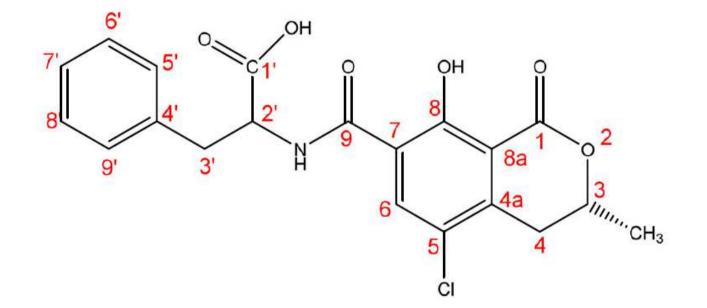
•Shows immuno- and hematotoxic effects, pulmonary disorders growth retardation, and cardiovascular effects.

•DAS is metabolized in a wide range of metabolites, but its metabolism is species-dependent.

•Main DAS biomarker:

- In urine and feces: 15-monoacetoxyscirpenol (15-MAS)
- In plasma: scirpentriol (SCP)

•Future research need to reveal if **glucuronidated DAS** can be assigned as relevant DAS biomarkers in urine.



Diacetoxyscirpenol

Metabolite	Abbreviation	Composition	Species	Method	Metabolic Phase	Ref
15- monoacetoxyscirpenol-3- glucuronide	15-MAS-3-glucuronide	C ₂₃ H ₃₂ O ₁₂	Rats, swines, goats cows, humans	In vitro: liver	Ш	(Yang et al., 2015)
15-monoacetoxyscirpenol	15-MAS	C ₁₇ H ₂₄ O ₆	Rats, chickens, swines, goats, cows, humans Rats Chickens Swines	In vitro: liver In vivo: urine & feces In vivo: feces In vivo: plasma	1	(Yang et al., 2015) (Yang et al., 2015) (Sakamoto et al., 1986) (Yang et al., 2015) (Bauer et al., 1985)
15-monoacetoxyscirpenol-4- glucuronide	15-MAS-4-glucuronide	C ₂₃ H ₃₂ O ₁₂	Swines, goats, cows, humans	In vitro: liver	11	(Yang et al., 2015)
4-monoacetoxyscirpenol	4-MAS	C ₁₇ H ₂₄ O ₆	Rats Rats	In vitro: liver In vivo: urine	1	(Yang et al., 2015) (Yang et al., 2015)
7-hydroxy-diacetoxyscirpenol	7-OH-DAS	C ₁₉ H ₂₆ O ₈	Rats, swines, goats, cows, humans	In vitro: liver	1	(Yang et al., 2015)
7-hydroxy-diacetoxyscirpenol (isomer)	7-OH-DAS (isomerr)	C ₁₉ H ₂₆ O ₈	Rats, chickens, swines, goats, cows, humans Rats Chickens	In vitro: liver In vivo: urine & feces In vivo: feces	1	(Yang et al., 2015)
8β-hydroxy-diacetoxyscirpenol	8 <mark>β-</mark> OH-DAS	C ₁₉ H ₂₆ O ₈	Rats, swines, goats, cows, humans	In vitro: liver	1	(Yang et al., 2015)
Deepoxy-15-monoacetoxyscirpenol	Deepoxy-15-MAS	C ₁₇ H ₂₄ O ₅	Rats, swines, cows Rats	In vitro: feces In vivo: urine & feces	1	(Swanson et al., 1988) (Sakamoto et al., 1986; Swanson et al., 1988)
Deepoxy-scirpentriol	Deepoxy-SCP	C ₁₅ H ₂₂ O ₅	Rats, swines, cows Rats	In vitro: feces In vivo: urine & feces	1	(Swanson et al., 1988) (Sakamoto et al., 1986; Swanson et al., 1988)
diacetoxyscirpenol-3-glucuronide	DAS-3-glucuronide	C ₂₅ H ₃₄ O ₁₃	Rats, swines, goats, cows, humans	In vitro: liver	Ш	(Yang et al., 2015)
Neosolaniol	NEO	C ₁₉ H ₂₆ O ₈	Rats, swines, goats, cows, humans Rats	In vitro: liver In vivo: urine	1	(Yang et al., 2015)
Scirpentriol	SCP	C ₁₅ H ₂₂ O ₅	Rats Swines Rats, swines, goats	<i>In vivo</i> : urine <i>In vivo</i> : plasma <i>In vitro</i> : liver	Ĭ.	(Swanson et al., 1988) (Sakamoto et al., 1986) (Yang et al., 2015)

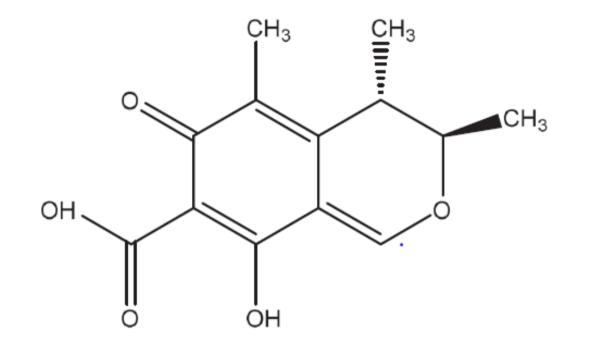
Ochratoxin A

Ochratoxin A (OTA)

- Mainly produced by *Penicillium* and *Aspergillus*.
- Observed in cereals and cereal-based products, coffee, grapes, and nuts.
- Group **2B carcinogen**
- Exerts **nephrotoxicity** and possesses carcinogenic, teratogenic, immunotoxic, and neurotoxic properties.

•OTA low level of metabolization

•OTA, OTB (the dechlorinated form of OTA), OTα (formed by the cleavage of the phenylalanine moiety of OTA), and their glucuronides are suggested to be the most prevailing fraction of total excreted OTA.


•Use these metabolites as OTA-biomarkers of exposure both in urine and plasma.

Ochratoxin A

Metabolite	Abbreviation	Composition	Species	Method	Metabolic Phase	Ref
(4R)-hydroxyochratoxin A	(4R)-OH-OTA	C ₂₀ H ₁₈ CINO ₇	Rats, chickens, swines, goats, cows, humans Rabbits Rats Chickens	In vitro: liver In vitro: liver In vivo: urine & feces In vivo: feces	I	(Yang et al., 2015) (Størmer et al., 1983) (Yang et al., 2015) (Yang et al., 2015)
(45)-hydroxyochratoxin A	(45)-OH-OTA	C ₂₀ H ₁₈ CINO7	Rats, chickens, swines, goats, cows, humans Rabbits Rats Chickens	In vitro: liver In vitro: liver In vivo: urine In vivo: feces	I	(Yang et al., 2015) (Størmer et al., 1983) (Yang et al., 2015) (Yang et al., 2015)
4(R)-hydroxyochratoxin B	4(R)-OH-OTB	C20H19NO7	Chickens	In vivo: feces	1	(Yang et al., 2015)
4(S)-hydroxochratoxin B	4(S)-OH-OTB	C20H19NO7	Chickens	In vivo: faeces	1	(Yang et al., 2015)
5-hydroxyochratoxin A	S'-OH-OTA	C20H18CINO7	Rats, chickens, swines,	In vitro: liver	1	(Yang et al., 2015)
			goats, cows, humans	In vivo: urine		(Yang et al., 2015)
			Rats Chickens	In vivo: feces		(Yang et al., 2015)
7-hydroxyochratoxin A	7'-0H-0TA	C ₂₀ H ₁₈ CINO ₇	Rats, chickens, swines, goats, cows, humans Rats Chickens	In vitro: liver In vivo: utine In vivo: feces	L	(Yang et al., 2015)
9-hydroxyochratoxin A	9'-0H-OTA	C ₂₀ H ₁₈ CINO7	Rats, chickens, swines, goats, cows, humans Rats Chickens	In vitro: liver In vivo: urine In vivo: feces	Ĺ	(Yang et al., 2015)
Ochratoxin A-8-β-glucuronide	OTA-8- glucuronide	C ₂₆ H ₂₇ NO ₁₃	Chickens	In vivo: feces	11	(Bordini, Rossi, Ono, Hirooka, & Sataque Ono, 2017)
Ochratoxin alpha	ΟΤα	C ₁₁ H ₉ ClO ₅	Sheeps Humans Rats	In vivo: urine In vivo: plasma & plasma In vivo: urine &	E	(Schaut et al., 2008) (Ali, Muñoz, & Degen, 2017) (Abbas, Blank, Wein, &
				plasma		Wolffram, 2013)
Ochratoxin B	OTB	C ₂₀ H ₁₉ NO ₆	Rats, chickens, swines, goats, cows, humans Rats Chickens	In vitro: liver In vivo: urine & feces In vivo: feces	L	(Yang et al., 2015)
Open lactone-ochratoxin A-8- β -glucuronide	Lactone-OTA-8- glucuronide	C ₂₆ H ₂₅ NO ₁₂	Chickens	In vivo: feces	Ш	(Bordini et al., 2017)

Citrinin

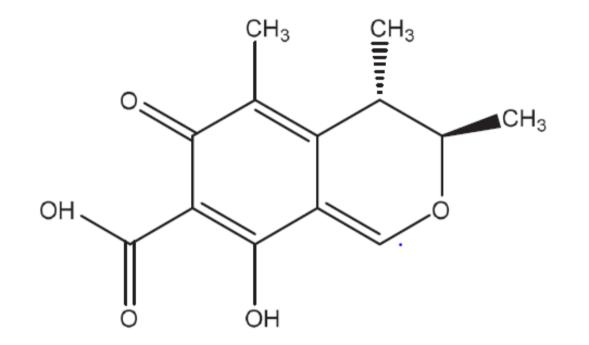
Citrinin (CIT)

• Produced by *Penicillium* and *Aspergillus*.

- •Occurs mainly in cereals and cereal-based products.
- •Group 3 carcinogen.

•Affects the kidney function in different species, but it appears to be considerably less toxic than OTA, results in necrosis of the distal tubule epithelium in the kidneys.

•Dihydro-citrinone (DH-CIT) should be considered as the most relevant metabolite in urine (84%).


•The lack of information on other metabolites can lead to an underestimation of CIT-exposure as possibly relevant other CIT-biomarkers have not yet been identified.

•Fast excretion in urine after 22.5 h (Degen et al., 2018).

Metabolite	Abbreviation	Composition	Species	Method	Metabolic Phase	Ref
Dihydrocitrinone	DH-CIT	C ₁₃ H ₁₄ O ₆	Humans Rats	<i>In vivo</i> : urine <i>In vivo</i> : urine	I	(Heyndrickx et al., 2015) (Dunn et al., 1983)

Fumonisins

Fumonisins (Fb)

2nd HBM4EU Training School, Nijmegen, November 19-23, 2018

•Produced by F. verticilloioides, F. proliferatum, and F. nygama.

•Observed in maize.

•12 fumonisins with the most important being fumonisin B1 (FB1), fumonisin 2 (FB2) and fumonisin 3 (FB3).

•FB1 is classified as a Group 2B carcinogen.

•Causes hepato-, nephron-, cytotoxic effects, and carcinogenic effects.

•FB low level of metabolization, mainly excreted as free form (>90%).

•FB have low absorption and are mainly excreted via the fecal route (> 90%). The level of FB detected in human urine is low.

•The accumulation of FBs in hair evidenced that FB1 in hair could be used as a biomarker for a long-term dietary exposure.

•In urine FB in free form, and N-acyl-fumonisin 1 (NAFB1) and N-acyl-hydrolysed fumonisin 1 (NAHFB1).

•Ration spinganine to sphingosine functional FB biomarker in animals.

Metabolite	Abbreviation	Composition	Species	Method	Metabolic Phase	Ref
Hydrolyzed FB1	HFB1	$C_{34}H_{59}NO_{13}$	Swines Humans	<i>In vitro</i> : liver <i>In vitro</i> : feces	I	(Gazzotti et al., 2011) (Cirlini et al., 2015; Hahn, et al., 2015)
Hydrolyzed FB2	HFB2	C34H59NO12	Swines	<i>In vitro</i> : liver		(Gazzotti et al., 2011)
N-acyl-fumonisin 1	NAFB1	C ₄₆ H ₈₅ NO ₁₃	Humans	In vitro: liver		(Harrer et al., 2013)
N-acyl-hydrolyzed fumonisin	NAHFB1	C ₄₆ H ₈₁ NO ₁₄	Humans	<i>In vitro</i> : liver	I	(Harrer et al., 2013)
Partially hydrolyzed fumonisin B1	pHFB1a	C ₄₀ H ₆₀ NO ₁₈	Swines Humans	<i>In vitro</i> : feces <i>In vitro</i> : feces	I	(Fodor et al., 2007) (Cirlini et al., 2015; Hahn, et al., 2015)

Zearalenone

Zearalenone (ZEN)

2nd HBM4EU Training School, Nijmegen, November 19-23, 2018

- •Produced by F. graminearum, F. culmorum, F. equiseti, and F. verticilliodes.
- •Occurs in cereals.
- •Group 3 carcinogen.

•A powerful **estrogenic activity** as its hormonal action exceeds that of most other naturally-occurring non-steroidal estrogens.

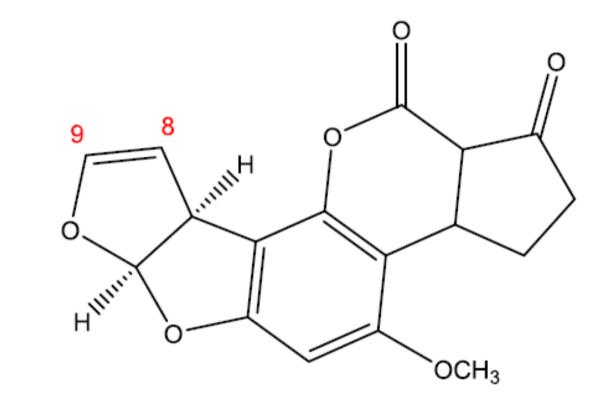
•Stimulation of the growth of human breast cancer cells

•Reduction, hydroxylation and glucuronidation are the major metabolic pathways of ZEN.

•Biomarker-analysis in urine should focus on free ZEN, α -zearalenol (α -ZEL), β -ZEL, and some of the most common hydroxylation and glucuronidation products like 8-hydroxy-zearalenone (8-OH-ZEN), 13-OH-ZEN, 15-OH-ZEN, and ZEN-14-glucuronide.

Zearalenone

Metabolite	Abbreviation	Composition	Species	Method	Metabolic Phase	Ref
10-hydroxy-zearalenone	10-OH-ZEN	C ₁₈ H ₂₂ O ₆	Rats, chickens, swines, goats, cows, humans	In vitro: liver	1	Yang, S., Zhang, H. (2017)
13-hydroxy-zearalenone	13-OH-ZEN	C18H22O6	Rats, chickens, swines, goats, cows, humans	In vitro: liver	4	Yang, S., Zhang, H. (2017)
15-hydroxy-zearalenone	15-OH-ZEN	C ₁₈ H ₂₂ O ₆	Rats, chickens, swines, goats, cows, humans	In vitro: liver	1	Yang, S., Zhang, H. (2017)
2-hydroxy-zearalenone	2-OH-ZEN	C ₁₈ H ₂₂ O ₆	Rats, chickens, swines, goats, cows, humans	<i>In vitro</i> : liver	1	Yang, S., Zhang, H. (2017)
3-hydroxy-zearalenone	3-OH-ZEN	C ₁₈ H ₂₂ O ₆	Rats, chickens, swines, goats, cows, humans	In vitro: liver	1	Yang, S., Zhang, H. (2017)
4-hydroxy-zearalenone	4-OH-ZEN	C ₁₈ H ₂₂ O ₆	Rats, chickens, swines, goats, cows, humans Rats	<i>In vitro</i> : liver <i>In vivo</i> : urine	1	Yang, S., Zhang, H. (2017)
4-hydroxy-zearalenone (isomer)	4-OH-ZEN	C ₁₈ H ₂₂ O ₆	Rats, chickens, swines, goats, cows, humans	In vitro: liver	1	Yang, S., Zhang, H. (2017)
5-hydroxy-zearalenone	5-OH-ZEN	C ₁₈ H ₂₂ O ₆	Rats & chickens Rats	In vitro: liver In vivo: urine	1	Yang, S., Zhang, H. (2017)
5-hydroxy-zearalenone (isomer)	5-OH-ZEN	C ₁₈ H ₂₂ O ₆	Rats, chickens, swines, goats, cows, humans	In vitro: liver	1	Yang, S., Zhang, H. (2017)
6-hydroxy-zearalenone	6-OH-ZEN	C ₁₈ H ₂₂ O ₆	Rats, chickens, swines, goats, cows, humans	In vitro: liver	1	Yang, S., Zhang, H. (2017)
6-hydroxy-zearalenone (isomer)	6-OH-ZEN	C ₁₈ H ₂₂ O ₆	Swines, goats, cows, humans	In vitro: liver]	Yang, S., Zhang, H. (2017)
8-hydroxy-zearalenone	8-OH-ZEN	C18H22O6	Rats, swines, goats, cows, humans	<i>In vitro</i> : liver		Yang, S., Zhang, H. (2017)
8-hydroxy-zearalenone (isomer)	8-OH-ZEN	C ₁₈ H ₂₂ O ₆	Rats, chickens, swines, goats, cows, humans	In vitro: liver	1	Yang, S., Zhang, H. (2017)
9-hydroxy-zearalenone	9-OH-ZEN	C18H22O6	Chickens, goats, cows	In vitro: liver	Ű.	Yang, S., Zhang, H. (2017)



Zearalenone

		goues constitutions				
9-OH-ZEN	C ₁₈ H ₂₂ O ₆	Rats, chickens, swines, goats, cows, humans	<i>In vitro</i> : liver	I	Yang, S., Zhang, H. (2017)	
Deepoxy-ZEN	C18H22O6	Cows & humans	In vitro: liver	1227	Yang, S., Zhang, H. (2017)	
Deepoxy-ZEN	C ₁₈ H ₂₂ O ₆	Rats, chickens, swines, goats, cows, humans	In vitro: liver		Yang, S., Zhang, H. (2017)	
OH-ZEN- glucuronide	$C_{24}H_{30}O_{12}$	Rats	In vivo: urine & feces	Ш	Yang, S., Zhang, H. (2017)	
ZEN-14,16-di- glucuronide	C ₃₀ H ₃₈ O ₁₇	Swines, goats, humans	<i>In vitro</i> : liver	П	Yang, S., Zhang, H. (2017)	
ZEN-14-2-di- glucuronide	C ₃₀ H ₃₈ O ₁₇	Rats, goats, cows	In vitro: liver	Ш	Yang, S., Zhang, H. (2017)	
ZEN-14-	C ₂₄ H ₃₀ O ₁₁	Rats, chickens, swines,	In vitro: liver	H	Yang, S., Zhang, H. (2017)	
glucuronide		goats, cows, humans	In vivo: feces		(Binder et al., 2017)	
		Swines Chicken & rats	<i>In vivo</i> : urine		Yang, S., Zhang, H. (2017)	
ZEN-14-SO ₃ H	C18H22SO8	Chickens	In vivo: feces	11	Yang, S., Zhang, H. (2017)	
ZEN-16- glucuronide	C ₂₄ H ₃₀ O ₁₁	Rats, chickens, swines, goats, cows, humans Chicken & rats	<i>In vitro</i> : liver <i>In vivo</i> : urine	11	Yang, S., Zhang, H. (2017)	
α-ZEL/β-ZEL	C ₁₈ H ₂₄ O ₅	Rats, chickens, swines, goats, cows, humans Rats & chickens Humans Swines	<i>In vitro</i> : liver <i>In vivo</i> : urine <i>In vivo</i> : urine <i>In vivo</i> : urine	l	Yang, S., Zhang, H. (2017) (Heyndrickx et al., 2015) (Binder et al., 2017)	
α-ZEL/β-ZEL-14- glucuronide	$C_{24}H_{32}O_{11}$	Rats & chickens	<i>In vivo</i> : urine & feces	II	Yang, S., Zhang, H. (2017)	ŋ
α-ZEL/β-ZEL-14- SO2H	C ₁₈ H ₂₄ SO ₈	Chickens	In vivo: feces	Ш	Yang, S., Zhang, H. (2017)	
α -ZEL/ β -ZEL-16- glucuronide	C ₂₄ H ₃₂ O ₁₁	Rats & chickens Humans	<i>In vivo</i> : urine & feces <i>In vivo</i> : urine	Ш	Yang, S., Zhang, H. (2017) (Heyndrickx et al., 2015)	
	Deepoxy-ZEN OH-ZEN- glucuronide ZEN-14,16-di- glucuronide ZEN-14-2-di- glucuronide ZEN-14- glucuronide ZEN-14-SO ₃ H ZEN-16- glucuronide α-ZEL/β-ZEL-14- glucuronide α-ZEL/β-ZEL-14- SO ₃ H α-ZEL/β-ZEL-16-	9-OH-ZEN $C_{18}H_{22}O_6$ Deepoxy-ZEN $C_{18}H_{22}O_6$ Deepoxy-ZEN $C_{18}H_{22}O_6$ OH-ZEN- glucuronide $C_{24}H_{30}O_{12}$ glucuronide $C_{30}H_{38}O_{17}$ glucuronide $C_{30}H_{38}O_{17}$ glucuronide $C_{30}H_{38}O_{17}$ glucuronide $C_{24}H_{30}O_{11}$ ZEN-14-2-di- glucuronide $C_{30}H_{38}O_{17}$ glucuronide $C_{24}H_{30}O_{11}$ ZEN-14- glucuronide $C_{24}H_{30}O_{11}$ ZEN-14- glucuronide $C_{18}H_{22}SO_8$ $C_{24}H_{30}O_{11}$ $C_{18}H_{24}O_5$ α -ZEL/β-ZEL $C_{18}H_{24}O_5$ α -ZEL/β-ZEL-14- SO ₃ H α -ZEL/β-ZEL-16- $C_{24}H_{32}O_{11}$	9-OH-ZEN $C_{18}H_{22}O_6$ $C_{18}H_{22}O_6$ Chickens, goats, cows Rats, chickens, swines, goats, cows, humansDeepoxy-ZEN $C_{18}H_{22}O_6$ $C_{18}H_{22}O_6$ Cows & humans Rats, chickens, swines, goats, cows, humansOH-ZEN- glucuronide $C_{24}H_{30}O_{12}$ $C_{30}H_{38}O_{17}$ RatsOH-ZEN- glucuronide $C_{30}H_{38}O_{17}$ $C_{30}H_{38}O_{17}$ Swines, goats, cowsOH-ZEN- glucuronide $C_{24}H_{30}O_{12}$ $C_{30}H_{38}O_{17}$ RatsZEN-14.2-di- glucuronide $C_{30}H_{38}O_{17}$ $C_{24}H_{30}O_{11}$ Rats, chickens, swines, goats, cows, humansZEN-14- glucuronide $C_{24}H_{30}O_{11}$ $C_{24}H_{30}O_{11}$ Rats, chickens, swines, goats, cows, humansZEN-14-SO_3H glucuronide $C_{18}H_{22}SO_8$ $C_{24}H_{30}O_{11}$ $C_{18}H_{24}O_5$ Chickens Rats, chickens, swines, goats, cows, humans $Chicken & rats$ $Chicken & rats\alpha-ZEL/\beta-ZELC_{18}H_{24}O_5Rats chickens, swines,goats, cows, humansRats & chickensHumansSwines\alpha-ZEL/\beta-ZEL-14-glucuronideC_{24}H_{32}O_{11}\alpha-ZEL/\beta-ZEL-14-SO_3HChickensC_{24}H_{32}O_{11}Rats & chickens$	9-OH-ZEN 9-OH-ZEN $C_{18}H_{22}O_6$ $C_{18}H_{22}O_6$ Chickens, goats, cows Rats, chickens, swines, goats, cows, humansIn vitro: liver In vitro: liverDeepoxy-ZEN Deepoxy-ZEN $C_{18}H_{22}O_6$ $C_{18}H_{22}O_6$ Cows & humans Rats, chickens, swines, goats, cows, humansIn vitro: liver In vitro: liverOH-ZEN- glucuronide $C_{24}H_{30}O_{12}$ glucuronideRatsIn vitro: liver 	9-OH-ZEN $C_{18}H_{22}O_6$ $C_{18}H_{22}O_6$ Chickens, goats, cows Rats, chickens, swines, goats, cows, humansIn vitro: liver I nvitro: liverI In vitro: liverDeepoxy-ZEN $C_{18}H_{22}O_6$ $C_{18}H_{22}O_6$ Cows & humans Rats, chickens, swines, goats, cows, humansIn vitro: liverI nvitro: liverOH-ZEN- glucuronide $C_{24}H_{30}O_{12}$ glucuronideRatsIn vitro: liverII fecesZEN-14,16-di- glucuronide $C_{30}H_{38}O_{17}$ glucuronideSwines, goats, humansIn vitro: liverII fecesZEN-14,2-di- glucuronide $C_{30}H_{38}O_{17}$ glucuronideRats, chickens, swines, goats, cows, humansIn vitro: liverII fecesZEN-14-2-di- glucuronide $C_{30}H_{38}O_{17}$ glucuronideRats, chickens, swines, goats, cows, humansIn vitro: liverII fecesZEN-14-2-di- glucuronide $C_{24}H_{30}O_{11}$ glucuronideRats, chickens, swines, goats, cows, humansIn vitro: liverII nvivo: urineZEN-14-SO_3 H glucuronide $C_{18}H_{22}O_6$ $C_{24}H_{30}O_{11}$ Rats, chickens, swines, goats, cows, humansIn vivo: urineZEL/ β -ZEL $C_{18}H_{24}O_5$ swinesRats, chickens, swines, goats, cows, humansIn vitro: liverI nvivo: urine α -ZEL/ β -ZEL $C_{18}H_{24}O_5$ swinesRats, chickensIn vivo: urineI nvivo: urine α -ZEL/ β -ZEL-14- So ₃ H $C_{24}H_{32}O_{11}$ Rats & chickensRats & chickensIn vivo: urine & feces α -ZEL/ β -ZEL-16- So ₃ H $C_{24}H_{$	9-OH-ZEN $C_{18}H_{22}O_6$ $C_{18}H_{22}O_6$ $Chickens, goats, cows, lumans$ $gaats, cows, humans$ In vitro: liverIYang, S., Zhang, H. (2017) Yang, S., Zhang, H. (2017) Tang, S., Zhang, H. (2017) Tang, S., Zhang, H. (2017)Deepoxy-ZEN $C_{18}H_{22}O_6$ $C_{18}H_{22}O_6$ Cows & humans $gaats, cows, humans$ In vitro: liver-Yang, S., Zhang, H. (2017) Yang, S., Zhang, H. (2017)OH-ZEN- glucuronide $C_{24}H_{30}O_{12}$ glucuronideRatsIn vitro: liver-Yang, S., Zhang, H. (2017) feces2EN-14, 16-di- glucuronide $C_{30}H_{38}O_{17}$ Swines, goats, humansIn vitro: liverIIYang, S., Zhang, H. (2017) fecesZEN-14-2-di- glucuronide $C_{30}H_{38}O_{17}$ Rats, goats, cowsIn vitro: liverIIYang, S., Zhang, H. (2017) fecesZEN-14-2-di- glucuronide $C_{30}H_{38}O_{17}$ Rats, goats, cowsIn vitro: liverIIYang, S., Zhang, H. (2017) fecesZEN-14-4- glucuronide $C_{24}H_{30}O_{11}$ Rats, chickens, swines, goats, cows, humansIn vitro: liverIIYang, S., Zhang, H. (2017) Yang, S., Zhang, H. (2017) (Binder et al., 2017) (Binder et al., 2017) (Binder et al., 2017)ZEN-14-SO_3H $C_{18}H_{22}O_{50}$ Rats, chickens, swines, goats, cows, humansIn vivo: urine In vivo: urineYang, S., Zhang, H. (2017) Yang, S., Zhang, H. (2017) Yang, S., Zhang, H. (2017) (Heyndrickx et al., 2017) (Heyndrickx et al., 2017)ZEN-14-SO_3H $C_{18}H_{24}O_5$ Rats, chickens, swines, goats, cows, humansIn vivo: urine In vivo: urineYang, S.,

Aflatoxins

Aflatoxins (AF)

2nd HBM4EU Training School, Nijmegen, November 19-23, 2018

Aflatoxins

•Produced by *Aspergillus flavus, A. parasiticus* and *A. nomius.*

•Aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2).

•Occur in cereals, dairy products, spices and dried fruits.

•Group 1 carcinogen.

•Major risk factor for hepatocellular carcinoma, other effects: immunosuppression, reduced growth rate, lowered milk and egg production, reduced reproductivity, reduced feed utilization and efficiency, and anaemia.

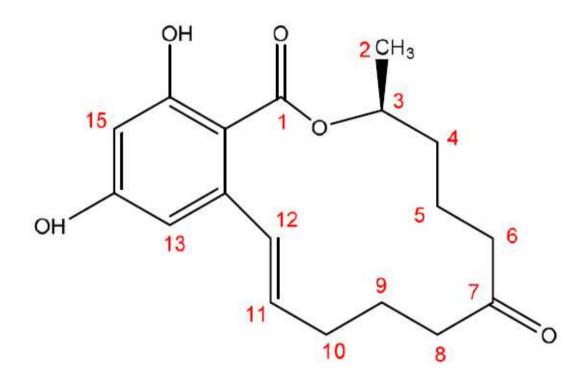
Aflatoxins

•Focus needs to be set towards the urinary analysis of AFB1, AFB2, AFG1, AFG2, AFM1, AFQ1, AFP1 and AF guanine.

•AFB1-lysine is a validated biomarker of chronic exposure in plasma.

•More knowledge on AFB2, AFG1, and AFG2 metabolism is necessary.

Aflatoxins


Metabolite	Abbreviation	Composition	Species	Method	Metabolic Phase	Ref
Aflatoxicol	AFL	C ₁₇ H ₁₄ O ₆	Cows Goats Rabbits, fish, swines, monkeys, rats, humans Chicken, turkey and ducks	<i>In vivo</i> : plasma & milk <i>In vivo</i> : milk, urine and feces <i>In vitro</i> : liver <i>In vitro</i> : liver	I	(Trucksess, Richard, Stoloff, McDonald, & Brumley, 1983) (Helferich et al., 1986) (Salhab & Edwards, 1977) (Lozano & Diaz, 2006)
Aflatoxin B1 8,9-dihydrodiol	AFB1 8,9-dihydrodiol	C ₁₇ H ₁₄ O ₈	Humans	In vitro: liver	I	(Neal et al., 1998) ´
Aflatoxin B1-glutathione conjugate	AFB1-GSH	C27H29N3O13S	Bovines	In vitro: liver	II.	(Kuilman et al., 2000)
Aflatoxin B1-8,9-epoxide	AFBO	C ₁₇ H ₁₂ O ₇	Ducks & turkeys Rats Humans	In vitro: liver In vitro: liver In vitro: liver	-	(Lozano & Diaz, 2006) (Hayes, Judah, Mc Lellan, & Neal, 1991) (Johnson, Yamazaki, Shimada, Ueng, & Guengerich, 1997)
Aflatoxin B1-albumin	AFB1-albumin		Humans Rats	<i>In vivo</i> : plasma <i>In vivo</i> : plasma	Ш	(Turner et al., 2005) (Dirr & Schabort, 1986)
Aflatoxin B1-lysine	AFB1-lysine	C ₂₃ H ₂₅ N ₂ O ₈	Humans Swines Rats	<i>In vivo</i> : plasma <i>In vivo</i> : plasma <i>In vivo</i> : plasma	II	(McMillan, 2018) (Di Gregorio et al., 2017) (Xue, Cai, Tang, & Wang, 2016)
Aflatoxin B-N7-guanine	AFB-N7 -guanine	C ₂₂ H ₁₆ N ₅ O ₇	Humans Rats	In vivo: feces & urine In vivo: urine	Ш	(Mykkänen et al., 2005) (Groopman, Donahue, & Zhu, 1985)
Aflatoxin M1	AFM1	C ₁₇ H ₁₂ O7	Cows Donkeys Humans Humans Rats Rats Goats	In vivo: milk In vivo: milk In vivo: urine & feces In vivo: milk In vitro: liver In vivo: urine In vivo: urine In vivo: milk, urine and feces	Ι	(Britzi et al., 2013) (Tozzi et al., 2016) (Ferri et al., 2017) (Altun, Gurbuz, & Ayag, 2017) (Gurtoo & Motycka, 1976) (Groopman et al., 1985) (Helferich et al., 1986)

Aflatoxins

Metabolite	Abbreviation	Composition	Species	Method	Metabolic Phase	Ref
Aflatoxin M1 8,9-dihydrodiol	AFM1 d8,9- dihvdrodiol	C ₁₇ H ₁₄ O ₈	Humans	In vitro: liver	I	(Neal et al., 1998)
Aflatoxin M2	AFM2	C ₁₇ H ₁₄ O ₇	Donkeys Cows	<i>In vivo</i> : milk <i>In vivo</i> : milk	I	(Tozzi et al., 2016) (Sartori, de Mattos, de Moraes, & da Nobrega, 2015)
Aflatoxin P1	AFP1	C16H10O6	Humans Rats	<i>In vivo</i> : urine & feces <i>In vivo</i> : urine	I	(Groopman et al.,' 1992) (Groopman et al., 1985)
Aflatoxin Q1	AFQ1	C ₁₇ H ₁₂ O ₇	Rats Humans Goats	In vitro: liver In vivo: urine & feces In vivo: milk, urine and faeces	Ι	(Gurtoo & Motycka, 1976) (Mykkänen et al., 2005) (Helferich et al., 1986)
Aflatoxin B2a	AFB2a	C ₁₇ H ₁₄ O ₇	Rabbits Humans	In vitro: liver In vivo: plasma	Ι	(Hatem, Hassab, Al-Rahman, El-Deeb, & El-Sayed Ahmed, 2005)

Sterigmatocystin

Sterigmatocystin (STC)

2nd HBM4EU Training School, Nijmegen, November 19-23, 2018

•Biochemical precursor of aflatoxins and produced by several *Aspergillus* species.

•Regularly detected in food, feed, but also in indoor environments, such as carpet and building materials.

•Group 2B carcinogen.

•Induces lung adenocarcinoma in mice and malignant trans-formations in human foetal lung tissue.

•Lack of information on STC metabolites.

•STC glucuronides could be the predominant metabolites from STC.

•More information is necessary regarding STC.

Metabolite	Abbreviation	Composition	Species	Method	Metabolic Phase	Ref
11-hydroxy- sterigmatocystin	11-OH-STERIG	C ₁₈ H ₁₂ O ₆	Humans Rats	In vitro: liver	I	(Pfeiffer et al., 2014)
11,12c-dihydroxy- sterigmatocystin	11,12c-diOH-STERIG	C ₁₈ H ₁₃ O ₇	Humans Rats		I	(Pfeiffer et al., 2014)
12c-hydroxy- sterigmatocystin	12c-OH-STERIG	C ₁₈ H ₁₂ O ₆	Humans Rats		I	(Pfeiffer et al., 2014)
9-hydroxy-sterigmatocystin	9-OH-STERIG	C ₁₈ H ₁₂ O ₆	Humans Rats		I	(Pfeiffer et al., 2014)
9,11-dihydroxy- sterigmatocystin	9,11-diOH-STERIG	C ₁₈ H ₁₃ O ₇	Humans Rats		I	(Pfeiffer et al., 2014)
9,12c-dihydroxy- sterigmatocystin	9,12c-diOH-STERIG	C ₁₈ H ₁₃ O ₇	Humans Rats		I	(Pfeiffer et al., 2014)
Sterigmatocystin-1,2-oxide	STERIG-1,2-oxide	C ₁₈ H ₁₂ O ₇	Humans Rats		I	(Pfeiffer et al., 2014)
Sterigmatocystin-1,2- dihydrodiol	STERIG-1,2- dihydrodiol	C ₁₈ H ₁₄ O ₈	Humans Rats		I	(Pfeiffer et al., 2014)

•Every mycotoxin is different: different metabolites and different excretion.

•Every specie is different: different metabolites and different excretion.

•Lack of research:

- In vitro: to elucidate metabolites.
- *In vivo*: to **elucidate excretion profile.**

Needed for identification and Validation of mycotoxin biomarkers of exposure in different matrices.
Multiple biomarker-driven explorations.

Mycotoxin Biomarkers of Exposure: A Comprehensive Review

Arnau Vidal 🔟, Marcel Mengelers, Shupeng Yang, Sarah De Saeger, and Marthe De Boevre

Abstract: To date, the use of biomarkers has become generally accepted. Biomarker-driven research has been proposed as a successful method to assess the exposure to xenobiotics by using concentrations of the parent compounds and/or metabolites in biological matrices such as urine or blood. However, the identification and validation of biomarkers of exposure remain a challenge. Recent advances in high-resolution mass spectrometry along with new analytical (post-acquisition data-mining) techniques will improve the quality and output of the biomarker identification process. Chronic or even acute exposure to mycotoxins remains a daily fact, and therefore it is crucial that the mycotoxins' metabolism is unravelled so more knowledge on biomarkers in humans and animals is acquired. This review aims to provide the scientific community with a comprehensive overview of reported *in vitro* and *in vivo* mycotoxin metabolism studies in relation to biomarkers of exposure for deoxynivalenol, nivalenol, fusarenon-X, T-2 toxin, diacetoxyscirpenol, ochratoxin A, citrinin, fumonisins, zearalenone, aflatoxins, and sterigmatocystin.

Keywords: biomarkers, exposure, human, in vitro, in vivo, metabolism, mycotoxin

MYTEX MYTEX South

Contacts

Arnau Vidal

Arnau Vidal PhD works as a FWO PostDoc at the Centre of Excellence on Mycotoxicology and Public Health, Ghent University, Belgium.

Email:

Arnau.vidalcorominas@ugent.be

Marthe.deboevre@ugent.be

Sarah.desaeger@ugent.be

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 733032.